
05/20/05 Effective Synchronization on Linux/NUMA Systems 1

Effective Synchronization
on

Linux/NUMA Systems
Gelato Conference 2005

May 20th, 2005
by

Christoph Lameter, Ph.D.
christoph@lameter.com

© 2005 Silicon Graphics, Inc. All rights reserved.

Effective locking is necessary for satisfactory performance on large Itanium based
NUMA systems. Synchronization of parallel executing streams on NUMA machines is
currently realized in the Linux kernel through a variety of mechanisms which include
atomic operations, locking and ordering of memory accesses. Various synchronization
methods may also be combined in order to increase performance. The talk presents the
realization of basic synchronization in Linux on Itanium and then investigates more
complex locking schemes.

The current Linux locking mechanisms rely heavily on a simple spinlock implementation
that may be fitting for systems of up to 8 processors. However, spinlocks cause excessive
cache line bouncing if more processors are contending for a lock. Some approaches that
have so far been made to solve the contention issue are presented and it is then suggested
to use an implementation for Linux of the approach first proposed by Zoran Radovic
which he called "Hierarchical Backoff Locks".

05/20/05 Effective Synchronization on Linux/NUMA Systems 2

Table of Contents
1 Introduction...3
2 Basic Atomicity...4

2.1 Cache lines.. 5
2.2 Atomic nature of processor operations..6
2.3 Utilizing operational atomicity for list processing.. 6
2.4 Barriers and acquire / release.. 7

3 Atomic semaphore instructions...9
3.1 Compare and exchange... 9
3.2 Fetchadd.. 10
3.3 Xchg.. 10

4 Spinlocks...10
4.1 Purpose..10
4.2 Implementation..11
4.3 Effectiveness... 13

5 Reader/Writer Spinlocks...14
5.1 Purpose..14
5.2 Implementation..14

6 Seqlocks.. 15
7 Atomic variables and usage counters..16
8 Disabling interrupts, preemption and split counters... 17
9 Combination of locking techniques.. 18
10 Locking approaches not used in Linux... 19

10.1 Queue locks... 19
10.2 Hardware specific locks.. 19

11 An HBO implementation for Linux.. 20
11.1 NUMA awareness... 20
11.2 Limiting off node contention...21
11.3 Starvation and anger levels... 21

12 Conclusion.. 22
13 Bibliography..23

05/20/05 Effective Synchronization on Linux/NUMA Systems 3

1 Introduction
It seems that the computing industry has hit a wall improving the speed of processors
through increasing the clock frequency of the processor. Current technology leads to
temperature problems at high clock rates. Heat problems are now effectively limiting the
ability to increase the number of cycles a processor can process. The way to further
increase the computing speed of processors is by parallelizing processing. The Itanium
instruction set was already designed with such parallelization in mind. However,
mainstream computers use IA32 compatible hardware and are designed for an instruction
set not optimized for parallelization. The best solution to parallelize processing is to put
multiple processors on one chip. Intel and AMD have now begun to ship multi-core
processors. Itanium multi-core chips are also expected later in 2005.

Multi-core processors have significant implications for operating software design since
the overwhelming number of systems sold in the future can be reasonably expected to be
equipped with multi-core processors. Multi-core processors typically have the
characteristics of a NUMA system since communication between the cores on the
processor chip (and maybe memory directly connected to one core) is more efficient than
off-chip communication to other processors and otherwise connected memory. The AMD
multi-core design uses core specific memory and I/O controllers leading to varying
memory access times depending on which core in a processor is used to access memory.1
These characteristics are typical for NUMA systems. It is likely that the number of
processors on a chip will increase rapidly. IBM already has a chip with 9 (sort of)
processors and other vendors seem to be planning processors with 4 and 8 cores.
Effective synchronization algorithms that function well on NUMA systems may become
an important core requirement in operating systems. So the issues that SGI has been
dealing with all along are likely to occur in the standard hardware of the future.

Here we will discuss the existing synchronization mechanism for Itanium processors and
their use to implement the various locking mechanisms available in Linux. This will first
include a discussion of the nature of atomic operations on Itanium systems, then an
investigation of the various primitives used to realize locking, a description of the
implementation of Linux kernel locking mechanisms and a discussion of advanced
combinations of various locking techniques in order to increase performance. The
performance implications of the current locking schemes will be discussed based on
results of performance benchmarks done with the page fault handler. The result is that
current algorithms are effective only for up to 4 processors. Spinlock contention becomes
a scalability problem for larger configurations.

In the final section we investigate a new way to handle locks first proposed by Zoran
Radovic called HBO locks. Performance tests show that his algorithm can address the
contention issues arising in a NUMA system with a large number of processors in an
more effective way while preserving the efficiency of the existing code for the
uncontended case.

1 AMD, “What is Multi-Core”. Internet http://multicore.amd.com/WhatisMC (accessed April 28th, 2005).

05/20/05 Effective Synchronization on Linux/NUMA Systems 4

2 Basic Atomicity
NUMA systems are basically
multiprocessor systems with a hardware
cache consistency scheme.2 Access to non
local devices and memory is provided via
a NUMA interlink designed for high
speed inter node communication.
However, the speed with which memory
may be accessed varies according to the
communication distance via the NUMA
interlink and the particular hardware
characteristics of the device or memory,
hence NUMA which means Non-
Uniform Memory Architecture.

The NUMA interlink uses a hardware
cache consistency protocol to provide a
coherent view of memory in the system
as a whole to all processors. The
hardware consistency protocol allows
access to memory in chunks of a cache
line. On the Itanium this cache line size is
typically 128 byte. The following diagram
shows the concept of a multiprocessor
system with a MESI type hardware cache
consistency protocol.3 Note that this model is simplified so that we can focus on the
characteristics important for locking. A variety of implementations of protocols to obtain
consistency over NUMA exists but all NUMA systems that I am currently aware of
follow the basic principles that we are using here.

The typical NUMA system contains nodes with a variety of resources. A node usually
contains a few processors, some memory and maybe I/O devices. Access from the local
processors to local memory is very fast. Access to memory in other nodes is possible
through the NUMA interlink but is slower since traffic has to flow across a bus. All
memory accesses are managed through the hardware cache consistency protocol to insure
a coherent view of memory for all processors in the system.

A program running on a NUMA system can be optimized by insuring that memory used
is local memory. However, if programs are larger than the memory available on a single
node or if a program uses more processors than are available on one node then operation
over the interlink becomes necessary. The more use a program makes of the interconnect
the more important the speed and the efficient use of the NUMA interlink becomes for
the overall performance of the system.

2 Curt Schimmel, Unix Systems for Modern Architectures, 305-
3 Schimmel, 314.

Drawing 1 NUMA System concept

CPU 1 Local Memory

CPU 2 Cachelines

N
U

M
A

 In
te

rc
on

ne
ct

CPU 1 Local Memory

CPU 2 Cachelines

Node 2

Node 1

05/20/05 Effective Synchronization on Linux/NUMA Systems 5

2.1 Cache lines
Each processor can obtain access to a
selection of cache lines via the cache
coherency protocol. The contents of the
cache line are then locally available
through the cache of cache lines in the
node. A cache line may be either be
acquired as a shared cache line that only
allows read access or as an exclusive
cache line. An exclusive cache line is
resource intensive because it must be
guaranteed that no other accesses occur
to this cache line while one processor has
ownership of the cache line. Write access
is only allowed on a cache line that is
held with exclusive access otherwise
multiple updates could be committed
simultaneously to memory. This
guarantees a cache line level atomicity of
writes across the hardware consistency
domain.

It is therefore useful to organize data structures in such a way that they fit into a cache
line. One cache line can then be acquired by a processor and all related data can be
processed from the same cache line without any additional memory operations.

It is advantageous to insure that code uses as many shared cache lines as possible because
then multiple nodes may cache in the data locally allowing simultaneous access to the
same data. Exclusive cache lines may require negotiations and a transfer across the
NUMA link before data may be accessed.

Conversion of cache lines between shared and exclusive modes are expensive since a
shared line may be held by multiple processors. The copies that other processors are
holding must be invalidated if one processor wants to hold the line as exclusive. This
means that the other processors will have to perform additional operations to reacquire
the cache line if they need to access data in the cache line again.

If two processors keep reading and writing the same cache line then the exclusive access
to the cache line has to be renegotiated again and again. The ownership of the cache line
and the content of the cache line seem to bounce back and forth between multiple
processors. This is called a bouncing cache line. The constant renegotiation of the
ownership of the cache line may cause lots of traffic across the NUMA link which may
become a performance bottleneck.

An atomic read/write cycle of a cache line can potentially be used for atomic changes to
memory since a cache line must be held for exclusive access before any write can take
place. However, the processor must intentionally perform such an atomic read modify
write cycle which requires the use of special atomic semaphore instructions. These bypass
most of the typical optimizations performed by a processor. Without the atomic

Drawing 2 MESI type cache control algorithm

CPU 1

Memory organized in
128 byte cachelines

CPU 2

CPU 3

Shared (Read Only)

Exclusive

Atomic Operations can be
performed on a cacheline if a
processor has exclusive
ownership of a cache line

05/20/05 Effective Synchronization on Linux/NUMA Systems 6

semaphore operations the cache lines may change at any time during the normal flow of
processing.

2.2 Atomic nature of processor operations
The processor interfaces with the cache in a way that guarantees the atomicity of certain
operations. For the Itanium the guarantee is that operations up to 64 bit—to properly
aligned memory locations—are atomic without any other special measures.4 This means
that if multiple processors attempt to store a 64 bit value to a properly aligned 64 bit
memory location then the memory location will later contain the value stored into that
location by one or the other processor but will not contain a few bits from one processor
and a few bits from another processor. Again note that this behavior is only guaranteed if
the 64 bit value is aligned on an 8 byte boundary. A misaligned 64 bit store is not
guaranteed to be atomic. Concurrent stores may yield some bytes set by one processor
and some by another.

Note that the Itanium is capable of handling data structures that are longer than 64 bit
(like for example 10 byte floating point numbers or 16 byte stores). These are typically
also atomic but special considerations (f.e. Atomicity may not be guaranteed if the write
back cache is enabled) may apply for these under some circumstances.5 If these
restrictions are not followed then storing two 10 byte floating point numbers concurrently
from multiple CPUs may (in some rare cases) yield a mixture of the two.

2.3 Utilizing operational atomicity for list processing
Loads and stores of 64 bit values are atomic as explained above. Addresses are 64 bit
entities on Itanium. This means that addresses can be safely replaced or read from
memory without additional measures (which may not be a surprising at all but there are
processors around that are challenged in this area). The Linux kernel contains a set of
RCU list functions6 that utilize the atomicity of loads and stores to allow the lock-less
management of lists.

To illustrate how this works:
Here is an insertion of an
element into a linear list
accomplished in a SMP safe
way just by utilizing the atomic
nature of 64 bit operations.

Consider the following list
with two entries. The entries
are linked by pointer to the
next entry and there is a global
variable that contains a pointer to the start of the list. It must be safe at all times to scan
the list for a lock-less implementation to be considered viable.

The writer first prepares a new element to be put in the list and points the next pointer to

4 Intel. Intel Itanium Architecture Software Developer's Manual: Volume 2, 2:235
5 Ibid., 2: 77
6 See include/linux/list.h

Drawing 3 Lockless insertion of a list element via an atomic store

Entry EntryPointer to
start of list

New Entry

New pointer
value

05/20/05 Effective Synchronization on Linux/NUMA Systems 7

the first element of the list. At this point scans through the list will not reach that new
element.

The writer then stores the address of the new element into the global variable pointing to
the start of the list. This operation is a 64 bit store and atomic and therefore the other
processors scanning the list will either scan two list element if the other processors see
the old start pointer or three list elements after the other processors see the new start
pointer. The list itself will never be inconsistent from the view of any processor scanning
the list.

Note that this only works for one writer and multiple readers. Some mechanism must
exist to insure that multiple writers do not manipulate the list at the same time.

2.4 Barriers and acquire / release
The example given above will only work if some barriers are put into place to insure that
changes to memory become visible in the proper order. The order in which the Itanium
processor reads from memory or writes to memory is undetermined to allow the processor
to optimize memory accesses. In the example here we need to be sure that the new entry
(which contains the old pointer to the start of the list!) becomes visible to other
processors before the new pointer to the start of the list becomes visible. We need a write
barrier between the setup of the new entry and the update of the pointer. The write barrier
insures that all writes before the barrier become visible to other processors before any
writes after the barrier.

Without write ordering the new start pointer value could become visible to other
processors before the content of the new entry. The structure may appear to another
processor to contain completely invalid data, the pointer from the new entry to the next
entry may appear to be NULL (in which case the processor scanning the list will only find
one element on the list and not three!) or garbage which may lead to invalid memory
accesses.

There is a similar mechanism for read called a read barrier. It insures that data read after
the barrier are actually retrieved after the read operations before the barrier. Both types of
barriers require the compiler to generate additional code to either reload data from
memory or to insure that data is written to memory. The read and write barriers are Linux
functions that are mapped to the same Itanium memory fence instruction. However, their
function may be different on other platforms and therefore we need to keep the distinction
although the Itanium processor does not do anything different.

Some of the barrier behavior can be encoded in a memory reference on Itanium. In that
case a load or store is said to have acquire or release semantics. A memory operation
with acquire semantics will insure that the access is visible before all subsequent
accesses. Release semantics imply that all prior memory accesses are made visible before
the memory access in the instruction.7 These semantics will obviously not affect values
cached in registers by the code generated through the compiler. This means that the
compilers must also in these cases cooperate to have the proper effect. The Linux barriers
insure that this occurs. If assembly is used then one needs to make sure that the compiler
gets somehow informed about how code has to be generated.

7 Intel. Intel Itanium Architecture Developer's Manual: Volume 1, 1:64.

05/20/05 Effective Synchronization on Linux/NUMA Systems 8

Linux provides a series of list operations
that allow lock less handling of double-
linked lists called RCU lists (defined in
include/linux/list.h). Drawing 4 shows
the implementation of list_add_rcu
using barriers and atomic stores. The
prev and next pointer of the new
element are set to point to the previous
and next element. With that it is ensured
that any scan of the list that encounters
the new element can continue.

Then a write barrier follows to insure
that the pointers in the new element are
visible before any changes to the list.
The list is changed by pointing the next
and prev element pointers to the new
item. Other readers of the list will either

scan the list without the element or with the element. If the new element is encountered
by another processor then it is guaranteed that the pointers of the new item are also
visible.

There are additional operations that allow the lock less removal of elements from the list
(list_del_rcu) and the scanning of the lists(list_for_each_entry_rcu). The lock less
removal from the list is not without difficulties since there is no way to guarantee that all
processors no longer see links to the list element to be removed. The real freeing of an
element has to be deferred until it is known that no one is browsing the list anymore. For
that purpose two functions exist to track concurrent scans of the lists:

rcu_read_lock()
rcu_read_unlock()
These are not real lock operations. The functions are used to maintain a counter of the
number of active readers. If the number of readers reaches zero then it is guaranteed that
no link to the list element exists anymore and the freed list element can be finally
deallocated.

Only one writer can be active at any one time if RCU type lists are used. To insure a
single writer additional locking is required.

Barriers and the regular loads and stores (which are atomic) are the most efficient means
for synchronization in a NUMA system since they do not require slow atomic semaphore
instructions. However, the elements to control atomicity discussed so far cannot
guarantee that a single processor knows that only itself caused a state change in a memory
location. For example it is not possible to insure that one processor is the only one that
replaces a zero in one memory location by a 1. We have no way to insure that only one
processor writes to a memory location.8

8 Dekker's algorithm can provide exlusion for two processors but we need to have a general solution for
an arbitrary number of processors.

Drawing 4 RCU add_list implementation

void __list_add_rcu(struct list_head * new,
 struct list_head * prev, struct list_head * next)
{
 new->next = next;
 new->prev = prev;
 smp_wmb();
 next->prev = new;
 prev->next = new;
}

void list_add_rcu(struct list_head *new,
struct list_head *head)

{
 __list_add_rcu(new, head, head->next);
}

05/20/05 Effective Synchronization on Linux/NUMA Systems 9

3 Atomic semaphore instructions
The Itanium processor provides a number of atomic read modify write operations called
Semaphore Instructions.9 Semaphore instructions are expensive because they acquire an
exclusive cache line and then do a read modify write cycle on a cache line atomically.
The processor cannot optimize memory access in the same way as done for other Itanium
instructions. Semaphore instruction are always non-speculative. This means that atomic
semaphore instructions result in pipeline stalls.10 All semaphore operations require the
full amount of cycles necessary to access memory (which may be quite a large number for
distant memory!) plus 5 clocks. A non semaphore instruction referencing memory may
only consume 1 clock or even be parallelizable with another instruction.

However, atomic semaphore operations are necessary in order to effect state transitions
by a single processor and these state changes are an essential element to realize locks.
Without semaphore instructions multiple processors may change a memory location but
there is no way for the processor to tell that it was the unique processor whose store
effected the change.

Semaphore instructions must have either release or acquire semantics and always do the
read before the write. There will be no other accesses to the same memory region between
the read and the write of a semaphore instruction.11

3.1 Compare and exchange
The compare and exchange instruction allows one to specify the content that a memory
location is expected to have and a new value that is to be placed into that memory
location. The atomic operation is performed in the following way. First an exclusive
cache line is acquired and all status changes to the cache line are stopped. Then the
contents of the memory location are compared with the expected value. If the memory
location has the expected value then the new value is written to the memory location.
Only then is the cache line allowed to change state or be acquired by another processor.
This allows an atomic state transition for a memory location.

The CMPXCHG operation returns the value of the memory location before the new value
was stored in it. The operation is successful, if the value returned is the expected old
value. If the expected value was returned then we can be sure that no other process raced
with this process and only this processor effected the state transition from the old value to
the new value.

The uniqueness of the state transition for one processor is typically used for locking
because we can insure that only one processor successfully accomplishes the state
transition on a certain memory location. If the other processors wait until they can do the
same state transition then it can be made certain that only one processor obtains exclusive
access to some resources and others are excluded from a resource protected by this
mechanism.

9 Ibid.,1:51.
10 Intel. Intel Itanium Processor Reference for Software Optimization, Intel Corporation: November 2001,

27.
11 Intel. Intel Itanium Architecture Developer's Manual: Volume 1, 1:64.

05/20/05 Effective Synchronization on Linux/NUMA Systems 10

3.2 Fetchadd
Fetchadd adds a value to a memory location atomically and returns the result. Fetchadd is
one way to realize counters without having counter values protected by other locking
mechanisms. Normal counter updates are subject to race conditions since incrementing a
counter implies loading the counter value, incrementing a register value and then writing
the result back to memory.

Another use of fetchadd is to realize usage counters. Usage counters are incremented for
each user of the structure. If a user no longer needs the structure then the usage counter is
decremented via fetchadd. We can check if this was the last user of the structure since
fetchadd also returns the result. If the result is zero then the structure can be freed.

3.3 Xchg
The xchg instruction is rarely used today. Historically it was the first atomic instruction
that became available for synchronization in multi-processing environments since it was
already implemented for single processor systems. Creative uses of xchg led to the initial
locking algorithms. Xchg can be used to atomically replace a value and check the value
later. This is useful if a state change needs to be made and if the code can then deal with
the prior condition encoded in the state variable.

4 Spinlocks

4.1 Purpose
Spinlocks are implemented in the Linux kernel to protect data structures and allow the
holders of the lock exclusive access to the structures that are protected by a spinlock.
Spinlocks are designed to be fast and simple. Only limited nesting of locks is allowed
(any nesting needs to be properly documented!), there is no deadlock prevention
mechanism and no explicit management of contention. A variety of spinlock types exists
to deal with concurrent interrupts or bottom handlers. These specialized versions of the
spinlocks are not discussed here since they would complicate the descriptions too much.

The two spinlock functions mainly used to delimit critical sections are:

A typical code example showing the use of a spinlock:

The mmlist_lock is acquired that protects the mmlist. Then an operation on mmlist is
performed (another list element is added)--this is the critical section that has cannot be
run concurrently—and the lock is released again (note that the list discussed here is not an

spin_lock(&mmlist_lock);

list_add(&dst_mm->mmlist, &src_mm->mmlist);

spin_unlock(&mmlist_lock);

spin_lock(spinlock_t *lock);

spin_unlock(spinlock_t *lock);

05/20/05 Effective Synchronization on Linux/NUMA Systems 11

RCU list!). The spinlock insures that there are no concurrent operations on the list. This
includes concurrent writers and readers which the lock less list operation discussed earlier
could not provide.

4.2 Implementation
Please keep in mind in the following discussion that spinlocks protect data structures.
There is typically an implied understanding as to which data elements a spinlock protects
which should be documented somewhere in comments near the declaration of the
spinlock. For example here is a snippet from the definition of the task_struct:

A frequent misunderstanding is to think that spinlocks protect a critical section. Multiple
critical section may exist that may manipulate the same data and therefore use the same
lock to obtain exclusive access to the data structure for a variety of purposes.

Spinlocks are realized on Itanium using a single 32 bit value that is either 0 (unlocked) or
1 (locked). The state change from 0 -> 1 is done using a CMPXCHG. Then a read barrier
is needed to insure that data protected by the lock—which may have changed while the
lock was acquired—is reread by the processor so that the state after the possible
completion of another critical section can be obtained.

Unlocking is simply a write barrier to insure that modifications done within the lock are
visible to others before the lock appears to be available. Then a zero is written to the lock.

If an attempt to acquire the lock using CMPXCHG fails then we enter into a wait loop. A
CMPXCHG requires the processor to acquire the cache line containing the lock for
exclusive access. If the operation fails then it is likely that the other processor holding the
lock will read or write to data in the cache line and thus exclusive access must be
transferred back to the processor holding the lock leading to the cache line bouncing back
and forth.

If the CMPXCHG would simply be retried on failure then there is a high likelihood that
the cache line will continually bounce between the processor holding the lock and the
processor (actually processors because multiple processors may want the lock!) trying to
acquire the lock until the lock is acquired by another processor.

In order to limit cache line bouncing, retries simply read the lock value and wait using
regular load instruction while the contents of the lock value is not zero. If the contents are
zero then another CMPXCHG is attempted to acquire the lock. Reading the lock value is
possible through a shared cache line. Multiple processors can then simultaneously wait
for changes to the lock state using a shared cache line. The idea is to avoid any additional

/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */

 spinlock_t alloc_lock;

/* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */

 spinlock_t proc_lock;

/* context-switch lock */

 spinlock_t switch_lock;

05/20/05 Effective Synchronization on Linux/NUMA Systems 12

cache line bouncing after the first
CMPXCHG.

However, any write to the cache line by
the holder of the spinlock requires the
acquisition of the exclusive access to the
cache line again. Then the processors
attempting to acquire the lock will
immediately force the cache line back
into shared mode since they are all
spinning in a read loop. So a different
kind of cache line bounce is incurred at
each write to the cache line. In heavily
contended environments it may be better
to locate the lock in a different cache line
from the data protected by the lock.

If a heavily contended lock is released
then it is likely that multiple nodes will
see the lock becoming zero while doing
simple reads. The nodes will acquire the
same shared cache line with the lock
value being zero. All processors will then
try a CMPXCHG simultaneously to
acquire the lock which will result in
multiple cache line bounces because each
processor requires exclusive access to the
cache line to perform the atomic
semaphore operation before being able to
start spinning using a read. After each

CMPXCHG each processor then needs to acquire the cache line again in shared mode.

Drawing 5 Spinlock implementation

Critical Section
accessing

data protected
by Spinlock

Write Barrier
Lockval = 0

Atomic
Operation

lockval 0 -> 1
Read Barrier

Wait while
lockval != 0

The atomic state
transition of the lockval
from 0 to 1 is realized
through a CMPXCHG. If
it fails then the processor
waits in the blue area for
lock release.

Green areas require
exclusive cache lines
The blue area requires
only a shared cache line.

Data structure
protected by the Spinlock

05/20/05 Effective Synchronization on Linux/NUMA Systems 13

4.3 Effectiveness
There are many advantages to the existing
spinlock implementation. Spinlocks are very
effective due to their simplicity. A single
instruction is typically sufficient to acquire and
release the lock. The scheme is known to work
well for a limited number of processors.

However, spinlocks are usually only held for
very brief periods. Release and reacquisition is
frequent. The acquisition and release will
always require all participating processors to
acquire exclusive access to the cache line. A
large number of processors contending for the
same lock increases the traffic on the NUMA
interconnect until the cache line negotiation
activity saturates the link which will lead to a
significant drop in performance of the whole
system.

Illustration 1 shows the time spent in the page
fault handler for anonymous page faults. The
page fault handler typically acquires the
page_table_lock twice. Yellow is the total time
spent in the fault handler per fault. Red is the
time spend allocating a page (which may
include acquiring yet another spinlock that we
will not consider for this discussion) and blue is the time spend zeroing the page. For one
and two processors the time spent in the fault handler is dominated by the necessity to
zero a page before providing the application access to it. The situation slightly changes
for 4 processors when the time spent apart from zeroing and allocating increases. This is
the time spend trying to acquire the page_table_lock.

If 8 processors are contending for the lock then more than 50% of processing time is
spent acquiring the lock, meaning the processors are busy causing cache lines to bounce
back and forth without making much progress in doing the work that they are expected to
do. The time spent on lock acquisition increases exponentially as the number of
processors increase. The diagram does not contain bars for more than 16 processors
because they would no longer fit onto the page.

Spinlocks are only efficient up to 4 processors. Beyond 4 processors the system will
spend significant resources on lock acquisition. Most of that time will be spend bouncing
the cache line containing the lock around. This includes acquisition of exclusive access to
the cache line as well as converting the cache line to shared mode.

Illustration 1 Time spent in Page fault handler in ms
with an increasing number of processors.

1 2 4 8 16
0.00000
0.01000
0.02000
0.03000
0.04000
0.05000
0.06000
0.07000
0.08000
0.09000
0.10000
0.11000
0.12000
0.13000
0.14000
0.15000
0.16000

Zero
Alloc
Fault

05/20/05 Effective Synchronization on Linux/NUMA Systems 14

5 Reader/Writer Spinlocks

5.1 Purpose
Reader-Writer spinlocks allow multiple readers on the same data structure or one single
writer. This is useful if a protected structure is frequently read and only rarely written. For
example the Linux task list is protected by a rwlock. Multiple processes may be scanning
the task list or a single process may modify the task list.

5.2 Implementation
The implementation of rwlocks
for Itanium also uses a single 32
bit value. The lock value is
incremented for each reader. If the
lock value is positive then the
lock value counts the number of
active readers. If a writer is active
then bit 31 is set and the 32 bit
signed value is negative. The lock
is unused if the lock value is zero.

Lock operations for the writer can
be realized like the regular
spinlock lock and unlock
operations. However, 0x8000 is
written into the counter instead of
1 setting bit 31. The write unlock
simply resets this bit by using a
CMPXCHG. It cannot write zero
to the lock value since the readers
may do some incrementing and
decrementing with the lock value
—even while the writer has bit 31
set—and the writer should not disturb the reader count. The CMPXCHG adds another
atomic semaphore operation to the lock.12 This means that the performance for the write
lock is worse than regular spinlocks since two CMPXCHG operations are performed
instead of one.

Readers increment the lock value and then check if the lock value is negative. If it is not
negative then the read lock was successfully acquired. The unlock is simply a decrement
of the lock value. However, both the increment and decrement are expensive semaphore
operations which make a reader lock more expensive than a regular spinlock even in the
uncontended case.

If the lock value is negative after increment then bit 31 is set and we know that a writer is
holding the lock. The reader undoes the increment by decrementing the lock value and

12 This may have been replaced by a simple byte store if my patch is accepted by the time this presentation
is given.

Drawing 6 Reader Writer Spinlock Implementation

Critical
Section

lockval clear bit 31

lockval
 0 -> 0x8000

Writer

Wait

Critical
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0

Readers

Critical
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0

05/20/05 Effective Synchronization on Linux/NUMA Systems 15

then waits until the counter is greater than zero. This means that the reader uses two
atomic semaphore operations for a failed lock under contention which creates more
opportunities for cache line bouncing.

In general the performance behavior of reader writer locks will be worse than the
performance of regular spinlocks.

6 Seqlocks
Seqlocks are the most scalable form of locks
that is useful if there are a large number of
readers. The readers do not need to write to
memory at all to handle this type of “lock”.
Maybe one should not talk about acquiring a
lock at all. Readers compare a counter before
and after a critical section. If the counter did
not change in the critical section then no writer
was active and the outcome produced by the
critical section is valid. If it has changed then
the results of the critical section is discarded
and it is run again.

A seqlock contains a spinlock which is used
for mutual exclusion between writers. Writers
increment the counter once on lock acquisition
resulting in an odd count value. The readers
know that the writer is in the critical section if
they encounter an odd value and rerun the
critical section. Writers increment the counter
again on unlock so that it becomes even. The
lock acquisition needs two atomic semaphore
operations. One to acquire the spinlock and
another to increment the counter. The write
unlock requires one semaphore operation to increment the counter and a store to unlock
the spinlock. This means that the seqlock writer is less effective than regular spinlocks or
rwlocks.

The readers can defer execution by repeatedly executing the critical section. This is good
if writers are rare. In an uncontended case all that is involved in the lock are two memory
read operations and two memory barriers. If there is or was a writer active while the
reader critical section was executed then we know that the result is invalid and we need to
repeat the critical section.

The seqlock is mainly used for time retrieval in Linux. For the Itanium I was able to avoid
any writes during the reading of time information clock so that clock access became
highly scalable. All processors may maintain their own copies of cache lines containing
the relevant information.

The problem with seqlocks is that the reader cannot really do anything in the critical
section apart from reading values since the critical section must be repeatable. The critical

Drawing 7 SeqLock

Critical
Section

Count++
spinunlock

spinlock
Count++

Writer

Critical
Section

count != prior
or count odd

Read Count

Readers

Critical
Section

count != prior
or count odd

Read Count

05/20/05 Effective Synchronization on Linux/NUMA Systems 16

section for read may race with the critical section for write. It is therefore problematic for
the writer or reader to perform updates of pointer structures, allocate memory etc.

Performance wise this is an ideal type of lock since readers never require an exclusive
cache line. Ideally the writer acquires an exclusive cache line which contains the spinlock
and the counter as well as the data managed once in a while and updates the information.

7 Atomic variables and usage counters
Linux provides a facilty to define variables of type atomic_t. Variables of that type
cannot be handled using regular C operators but need to be manipulated using accessors.
The idea is that these variables can be safely manipulated in a multiprocessing
environment without needing the protection of a spinlock.

Here is a list of the most frequently used macros to mainpulate atomic variables.

An atomic_t works just like a regular integer but the operations are guaranteed to be
atomic in a multiprocessing environment. The cost of the operations on Itanium varies.
Initialization, read and store of atomic variables have the same cost as a regular variable
since they use the atomicity of loads and stores. However, adding and incrementing an
atomic variable uses a fetchadd instruction which is much slower than a regular
increment as discussed earlier. The same is valid for atomic_dec_and_test . Atomic
operations may need memory barriers to convince the compiler to write variables to
memory or refetch them and to insure that other processors see the right values when
checking an atomic variable. These issues make the handlig of atomic variables much
more complex than spinlocks.

There are other atomic operations that can be performed on arbitrary variables. These are
atomic bit operations set_bit , clear_bit, change_bit, test_and_set_bit,
test_and_clear_bit, test_and_change_bit. All of these do a loop around a load and a
cmpxchg on the same cache line. A cache line may be first acquired in shared mode and
then converted to exclusive. A regular cmpxchg would be more efficient since the cache
line is only acquired once as an exclusive cacheline.

One frequent technique used in the Linux kernel to find out when to free an object is to
keep a usage counter in the object. An atomic value is defined in the structure and
initialized to 1. When an additional pointer is set up to the object the counter is
incremented using atomic_inc.

atomic_t x;

ATOMIC_INIT(x);

y = atomic_read(x);

atomic_set(x, 789);

atomic_add(35, x);

if (atomic_dec_and_test(x)) { ... }

05/20/05 Effective Synchronization on Linux/NUMA Systems 17

When a reference is removed
then the reference counter is
decremented while checking if it
reaches zero via the
atomic_dec_and_test
instruction. Dec and test is
performed using the fetchadd
semaphore operation on Itanium
so that it is guaranteed that only
one processor sees the reference
counter become zero. That
processor then knows that it is
the only one still holding a
reference to the structure and can
safely free it.

The example in drawing 8 shows
the use of atomic_dec_and_test
to free a memory descriptor for a
process. It may be necessary to
acquire another spinlock during
removal in order to safely free

this element from a list.

The use of fetchadd for increment and decrement is an expensive operation since fetchadd
requires exclusive cache lines and causes pipeline stalls. If references to objects are
frequently established and then removed again then these cache lines may start bouncing
and will become a performance bottleneck. This is known for example to happen for the
routing information of the Linux IP stack and in the page fault handler if more than 64
processors are simultaneously allocating memory.

8 Disabling interrupts, preemption and split counters
A simple form of guaranteeing “atomicity” of operations can be had by disabling
interrupts or preemption if the variables in use are only accessible from a single
processor. Each processor has a special section of variables that are reserved for its own
use exclusively called the per cpu variables. Variables defined per cpu are placed in this
area. It is safe to assume that no other processor accesses these.

One way to avoid the overhead of using semaphore instructions to increment and
decrement a counter is to split a counter into per cpu variables. Individual counters can
then be incremented using regular load and store instructions to cache lines that are not
shared between processors. However, in order to obtain a global count, one then needs to
loop over all per cpu areas and add up all the processor specific counters. This method
may also be used in some situations to avoid cache line bouncing on usage counters. One
runs into issues with the atomicity of the check for zero references. Since no locking is
available there is also no protection against races. The results of adding up all the
counters may only be approximate.

Drawing 8 Example of atomic_dec_and_test to free a struct from the code for
the removal of the reference to a memory descriptor.

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
 if (atomic_dec_and_test(&mm->mm_users)) {
 exit_aio(mm);
 exit_mmap(mm);
 if (!list_empty(&mm->mmlist)) {
 spin_lock(&mmlist_lock);
 list_del(&mm->mmlist);
 spin_unlock(&mmlist_lock);
 }
 put_swap_token(mm);
 mmdrop(mm);
 }
}
EXPORT_SYMBOL_GPL(mmput);

05/20/05 Effective Synchronization on Linux/NUMA Systems 18

9 Combination of locking techniques
One may combine several of the locking techniques. The lock less list operation using the
RCU mechanism described needs spinlocks to insure exclusivity for writers. The seqlocks
use a spinlock in the same way.

Another example for combining locking techniques are the modifications that I have
proposed in order to make atomic operations on page table entries possible. This is
accomplished by changing the locking from only relying on the page_table_lock to a
combination of atomic operations plus the use of the page table spinlock.

In the Linux kernel the page_table_spinlock is acquired for any operation on the page
table in order to serialize updates to the page table. However, the system also acquires a
read lock on mmap_sem when processes makes small changes to memory mappings
which includes changing individual entries. Mmap_sem is acquired for larger changes to
the memory maps as a write lock. We can therefore rely on the mmap_sem for protection
against large scale remapping of page table entries. The role of the page_table_lock is
therefore only essential for small modifications of page table entries.

One can now redefine the role of the
page_table_lock to only offer protection against
modifications to a page table entry in the sense of
replacing a valid entry with another but the
replacement of an empty page table entry with a
valid entry without the page_table_lock. Then it
must also be guaranteed that an empty page table
entry can always be populated even when a read
lock of the mmap_sem and the page_table_lock
is held.

This means that all code using the
page_table_lock must now insure that a page
table entry is never sporadically set to empty.
Also if a page table entry is empty then the code
using the page_table_lock must not assume that
the page table entry will stay empty but must use
atomic operations to replace values in order to
guard against other processors concurrently
changing the value without obtaining the lock.

Holding the page_table_lock now only insures that a valid page entry is not changed. It
no longer protects from empty page table entries becoming populated.

This solution to the contention problem allows for the removal of the use of the
page_table_lock from the anonymous fault handler which will then make the page fault
handler scale linearly as seen on the diagram.

Modifying lock semantics requires a change in the way an important lock is handled in
the memory subsystem and is typically seen as an invasive change. The patch that does
the modifications proposed here has so far not been accepted for inclusion into the Linux
kernel.

Illustration 2 Page fault time in ms per page with an
increasing number of processors.

1 2 4 8 16 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Standard
Atomic Ops

05/20/05 Effective Synchronization on Linux/NUMA Systems 19

10 Locking approaches not used in Linux
There are a variety of approaches that have been proposed over time to solve the
contention issues. These range from simple back off algorithms to complex queuing
logic.

The obvious first measure has always been a back off algorithm since the main issue
encountered in large NUMA systems is contention on the NUMA interlink. A back off
algorithm keeps the interlink free and allows useful work to go forward. The interlink is a
type of a network and the obvious choice here is to use an exponential ethernet style back
off algorithm. However, that carries the risk of long waiting periods. So there needs to be
a cap on the maximum allowed back off period.

For an exhaustive list of locking approaches have a look at Radovic's writings mentioned
in the bibliography. We only discuss two approaches here. MCS queue locks because they
are often mentioned and hardware specific locks because they may hold some promise.

10.1 Queue locks
Queue locks are often mentioned because they are seen to address the issue of contention
by serializing the lock acquisition. Queue locks allow the proper ordering and
prioritization of processes trying to acquire the lock. The simple spinlock implementation
favors the fastest. Whoever grabs the lock first can proceed first. Remote nodes may be at
a disadvantage. Queue locks can insure that the lock is acquired in the proper sequence to
insure that all processes obtain the lock in order. Queue locks allow fair lock acquisition.
Queue locks can also insure that each processor spins on a different cache line reducing
cache line bouncing significantly.

However, queue locks typically require much more effort than simple spinlocks and will
slow down the system for the uncontended case. Efforts have been made to combine
queue locks with a spinlock mechanism in order to simplify the uncontended case.

The most widely known of the queue based locking approaches are the MCS locks. John
Stultz has done an implementation for Linux in 2002.13

The problem with queue locks is that lists of processors have to be managed. This hurts
the uncontended lock case significantly and also generally leads to lower performance
during contention due to complex list handling. We do not want to hurt the uncontended
case with our modifications nor can we afford to do complex list processing which in turn
may require its own locking scheme to synchronize the lists between multiple processors.

10.2 Hardware specific locks
The main performance limitations for spinlocks result from the use of the MESI scheme
to negotiate cache lines. Cache lines contain much more information than necessary for
the spinlock itself and thus some optimized hardware based solution could be more
efficient if smaller size entities could be handled by specialized hardware without having
to deal with bouncing cache lines. Hardware logic may also use a different algorithm
from the cache line based approach of the hardware coherency protocols.

13 http://www.gelato.unsw.edu.au/linux-ia64/0202/3009.html

05/20/05 Effective Synchronization on Linux/NUMA Systems 20

However, the performance of those operations must be able to compete with the atomic
primitives available in the Itanium chip which is difficult to do with an I/O mapped
hardware device given the speed advantage that instructions of the processor enjoy since
they are realized in the processor core.

11 An HBO implementation for Linux
If there is lock contention limiting the
scalability of Linux then the approach used
so far has been to change the way the
spinlocks are used in the Linux kernel.
Locks can be broken up into multiple locks,
the algorithm may be changed to avoid
locks (like the approach taken for the
atomic page table entry operations
discussed above) and so on. While these
are all valid approaches: Why not see a
general problem with spinlocks under
contention for systems with more than 4
processors and seek a modification to the
spinlock algorithm itself to address
contention? What we need is a back off
algorithm that results in processors staying
off the NUMA interlink for awhile to allow
other processors to finish their work
avoiding useless cache line bouncing while not hurting the uncontended case.

Zoran Radovic has developed an algorithm to deal with lock contention in large NUMA
systems14 and I have implemented his algorithm on Itanium. Radovic calls his algorithm a
Hierarchical Back off Algorithm, short HBO.

11.1 NUMA awareness
The standard Linux Spinlock implementation uses 0 to signify that a spinlock is unlocked
and 1 for a lock in the locked state. The lock value is a 32 bit entity and we could put
more information into that lock value. So instead of simply writing 1 to the lock, we write
the node id (plus one so that node 0 is not confused with a lock not taken) to the lock.
This means that the node number of the processor holding the lock will be available
during contention and the processor trying to acquire the lock can adapt its behavior
according to the distance to the node of the processor holding the lock. Operations over
the NUMA link are more expensive and thus should not be tried as often as intra node
lock attempts.

The optimal back off period for local contention was found to be 3 microseconds and
around 8 microseconds for remote contentions. The different back off periods favor the
local locks over remote locks in order to avoid moving the cache line with the lock
around too much. For every failure to obtain the lock the back off period is increased by
50% until a limit is reached.

14 Radovic, 9

Illustration 3 Average Fault Time in ms using HBO locking
1 2 4 8 16 32 60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Linux
HBO

05/20/05 Effective Synchronization on Linux/NUMA Systems 21

11.2 Limiting off node contention
The lock address will be checked
against a node specific local lock
block address before a CMPXCHG is
performed to acquire the lock. If the
lock address is equal to the local
block value then the processor will
spin on that instead of on the lock.
The local lock block address is node
specific. It will be in the processor
cache allowing a comparison with
only minimal overhead.

If a processor from one node finds
that it cannot acquire a remote lock
then it will set the local lock block
address. Other processors from the
same node will then be hindered to
acquire the same off node lock. This
limits off node lock acquisition
attempts in heavily contended
environments.

11.3 Starvation and anger levels
The back off algorithm may lead to starvation. Ownership of the lock may stay on one
node if the local processors are continually accessing the same lock. At some point it will
become more advantageous to move the lock since processes are stalling on remote nodes
for too long. For that purpose off node lock acquisition first goes through a series of back
offs. But if the node does not acquire the lock in a certain number of attempts it increases
its “anger level”. Finally—when the anger level has reached a predetermined limit (50
attempts in our test cases)—it will remotely access the block address of the remote node
and set that to the lock to be acquired. That will make the processors on the remote node
spin when trying to acquire the lock the next time and the node will loose ownership of
the lock to the angry node which will clear the block address of the remote node after
having acquired the lock. This means that the lock ownership will be transferred to
another node and then multiple processors waiting for the lock on the new node may
proceed. Ideally—if the lock logic is properly tuned—the approach may lead to repeated
moves of the lock between nodes. Hopefully all the local pending locks will be processed
before moving to the next node thereby minimizing traffic on the NUMA Link.

The uncontended case is inlined in order to make lock acquisition as fast as standard
spinlocks. There is an additional load and compare and the need to load the node id which
creates overhead but this overhead was not measurable in the test cases that I have tried.

If contention arises then functions will be called to deal with the reason for the
contention. These functions may contain more extensive logic and perform the
exponential back off and contain the anger logic. The current implementation also
contains a /proc interface that allows the tuning of the back off periods as well as a look

Drawing 9 HBO lock acquisition

Lockaddress =
Blockaddress ?

Cmpxchg
0 ->

 Node ID +1

Wait
Local Spin

Lock Contention
Handling.

Node dependent
backoff.

Anger Logic.

Critical
Section

05/20/05 Effective Synchronization on Linux/NUMA Systems 22

at statistics regarding lock acquisition. If this ever would need to be implemented in
production systems then additional tuning would certainly have to be done.

12 Conclusion
The existing implementation of spinlocks is not very suitable for large scale NUMA
machines that may experience heavy spinlock contention. The proposed logic for the
HBO locks is more complex than the simple spinlocks in Linux. It adds the overhead of
an additional load before the CMPXCHG in the non contented case. However, there is no
performance loss because all locking uses the same load address and the load is made
from a cached entry.

The performance win for high contention begins to be significant with 16 processors and
grows more and more for more and more processors. Using HBO locks may yield a nice
performance boost for large scale systems.

05/20/05 Effective Synchronization on Linux/NUMA Systems 23

13 Bibliography
Intel. Intel Itanium 2 Processor Reference Manual for Software Development and

Optimization. Intel Corporation. May 2004.
Intel. Intel Itanium Architecture Software Developer's Manual: Volume 1: Application

Architecture. Intel Corporation. Revision 2.1. October 2002.
Intel. Intel Itanium Architecture Software Developer's Manual: Volume 2: System

Architecture. Intel Corporation. Revision 2.1. October 2002.
Intel. Intel Itanium Architecture Software Developer's Manual: Volume 3: Instruction Set

Reference. Intel Corporation. Revision 2.1. October 2002.
Intel. Itanium Processor Microarchitecture Reference for Software Optimization. Intel

Corporation, March 2000.
Love, Robert. Linux Kernel Development. Sams Publishing, Indianapolis: Indiana, 2004.
Mosberger, David and Stephane Eranian. IA64 Linux Kernel: Design and

Implementation. Prentice Hall, 2002.
Radovic, Zoran and Erik Hagersten. “Hierachical Backoff Locks for Nonuniform

Communication Architectures” in Proceedings of the Ninth International
Symphosium on High Performance Computer Architecture, Anaheim, California,
February 2003. Internet:http://www.it.uu.se/research/group/uart/projects/nucasynch .

Radovic, Zoran. “Efficient Synchronization in Coherence in Nonuniform Communication
Architectures”. Licentiate Thesis: Department of Information Technology, Uppsala
University, September 2003.
Internet:http://www.it.uu.se/research/group/uart/projects/nucasynch .

Schimmel, Kurt. UNIX Systems for Modern Architectures: Symmetric Multiprocessing
and Caching for Kernel Programmers. Addison-Wesley, 1994.

