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Effective locking is necessary for satisfactory performance on 
large Itanium based NUMA systems. Synchronization of parallel 
executing streams on NUMA machines is currently realized in the 
Linux kernel through a variety of mechanisms which include 
atomic operations, locking and ordering of memory accesses. 
Various synchronization methods may also be combined in order 
to increase performance.
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Introduction

● Limits on processor clock rate
– Future: Multi-Core and NUMA everywhere
– Parallelism Itanium / Multi-Core

● Synchronization Methods
– Critical Component for concurrency
– Determines viable hardware scaling

● Outline
– Existing synchronization on Linux / Itanium
– Reasons for issues with lock contention arises
– Hierachical Backoff Locks on large NUMA 

systems.
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Basic Atomicity

● NUMA Multiprocessor 
Systems
– NUMA interconnect
– Hardware consistency 

protocol
● Node

– Processor/ Memory
● Cache Line
● MESI type

– Coherent view of mem-
ory

– In Hardware
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Cache Lines 

● Modes of Cachelines
– Shared
– Exclusive

● Cache Lines
– Efficiency
– Optimization
– Bouncing

● Special Operations
– Read Modify Write

CPU 1

Memory organized in
128 byte cachelines

CPU 2

CPU 3

Shared (Read Only)

Exclusive

Atomic Operations can 
be performed on a 
cacheline if a cpu has 
exclusive ownership of 
a cache line
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Atomic Loads and Stores

● 64 bit atomic operations
– Alignment issues

● RCU functions in the Linux kernel
● A lockless insertion of a list element

Entry EntryPointer to 
start of list

New Entry

New pointer value
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Barriers and Acquire/Release 

● Itanium Memory accesses
– Unordered by nature 
– Necessity of ordering memory accesses
– Memory Fence
– Instructions with acquire / release semantics
– Write and Read barriers

● Semaphore instructions
– Necessity
– Efficiency vs. atomic loads / stores
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Linux RCU Lockless List 
Manipulation

● In include/linux/list.h
– list_add_rcu(struct  

list_head *new, *head)
– list_del_rcu(struct 

list_head *entry)
– list_for_each_entry_rcu(..)

● Single writer/ multiple 
readers
– Deferral of freeing objects

● rcu_read_lock
● rcu_read_unlock

void __list_add_rcu(struct list_head * new,
      struct list_head * prev, struct list_head * next)
{
        new->next = next;
        new->prev = prev;
        smp_wmb();
        next->prev = new;
        prev->next = new;
}

void list_add_rcu(struct list_head *new,
struct list_head *head)

{
        __list_add_rcu(new, head, head->next);
}

● Write exclusive 
requires a regular 
lock
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Itanium Semaphore 
Instructions

● Read Modify Write cycles
– exclusive cacheline
– Non-speculative
– Pipeline stalls
– Acquire or release semantics

● Single processor effects a certain state 
change
– Compare and Exchange CMPXCHG
– Fetch and add FETCHADD
– Exchange XCHG
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The Spinlock Implementation
● Protected Data
● Critical Sections
● Locking
● Unlocking
● Exclusive Cache line use 

vs. Shared Cache line
● Bouncing Cachelines
● Spinlocks under 

contention

Crit. Section
accessing

data protected
by Spinlock

Write Barrier
Lockval = 0

Atomic
Operation

lockval 0 -> 1
Read Barrier

Wait while 
lockval != 0

The atomic state transi-
tion of the lockval from 
0 to 1 is realized 
through a CMPXCHG. 
If it fails then the pro-
cessor waits in the blue 
area for lock release.

Green areas require ex-
clusive cache lines
The blue area requires 
only a shared cache 
line.

Data structure
protected by the Spinlock 
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Spinlock Examples

● Spinlock Functions ● Sample Use
spin_lock(spinlock_t *lock);
spin_unlock(spinlock_t *lock);

spin_lock(&mmlist_lock);
list_add(&dst_mm->mmlist, &src_mm->mmlist);
spin_unlock(&mmlist_lock);
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Time in the Page Fault Handler
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Reader/Writer Spinlocks

● Lock value
– >0 -> nr readers
– <0 writer
– 0 free

● Needs
– 2x Cmpxchg
– 2x Fetchadd
– Clear Bit 31 (byte 

store instead?)
● Performance 

worse than 
regular spinlock

Critical 
Section

lockval clear bit 31

lockval
 0 -> 0x8000

Writer

Wait

Critical 
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0

Readers

Critical 
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0
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Sequence locks

● Most scalable lock
– Is this a “lock”?
– no write for readers

● Effort
– Writer

● 2xCmpxchg 
2xFetchadd

– Reader
● 2x barrier

● Critical section
● Time access

Critical 
Section

Count++
spinunlock

spinlock
Count++

Writer

Critical 
Section

count != prior
or count odd

Read Count

Readers

Critical 
Section

count != prior
or count odd

Read Count
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Atomic Variables and Usage 
Counters

● Use of “atomic_t”
● Explicit use of 

memory barriers
● Usage counters and 

atomic_dec_and_test
● Risk of cache line 

bouncing due to 
counter increments 
and decrements

● Effort
– High

● Increment
● Decrement
● Add

– Low
● Assignment
● Store
● Loads

– Very high
● Bit Operations
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Example of 
atomic_dec_and_test

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
        if (atomic_dec_and_test(&mm->mm_users)) {
                exit_aio(mm);
                exit_mmap(mm);
                if (!list_empty(&mm->mmlist)) {
                        spin_lock(&mmlist_lock);
                        list_del(&mm->mmlist);
                        spin_unlock(&mmlist_lock);
                }
                put_swap_token(mm);
                mmdrop(mm);
        }
}
EXPORT_SYMBOL_GPL(mmput);
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Per CPU “Atomicity”

● Guaranteed if one processor is accessing 
variables reserved for its own use.

● Disabling interrupts, preemption to 
guaranteed non interference by interrupts or 
the process being moved to another 
processor.

● Splitting of counters per cpu to avoid atomic 
operations

● Counter coherency issues
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Combining Techniques

● Earlier example of rcu 
locks and spinlocks

● Page Fault Patches
– Page table spinlock
– Mmap_sem
– Limited atomic operations

● Redefining a spinlock
– Do not modify only populate

● Severity of changing lock 
semantics
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Other Locking Approaches

● Backoff Algorithms
– Obvious choice
– Simple Backoff
– Ethernet style exponential backoff

● Queue locks
– Access ordering
– Slow typical combined with simple spinlock
– Fairness addressed
– MCS

● John Stultz MCS Queue implementation for Linux
● Locking based on Hardware features

– Bypass cache coherency protocol
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Hierarchical BackOff Locks
● HBO

– NUMA aware backoff
– Limit off node 

contention
– Starvation and Anger 

Levels
● Disadvantages

– Additional load 
operation

– Complexity of 
contention handling

1 2 4 8 16 32 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Linux
HBO



20

HBO Details

● Contention handling
– Backoff

● On node -> 4 
microsecond backoff

● Off node -> 7 
microseconds

● 50% backoff increase 
on failure

– Off node
● Set blockaddress

– Anger Level
● After 50 retries set 

remote blockaddress

Lockaddress = 
Node Blockaddress

 ?

Cmpxchg
0 -> Node ID +1

Wait
Local Spin

Lock Contention
Handling.

Node dependent
backoff.

Anger Logic.

Critical
Section


