The CLX 5.00 Installation and Administration Manual

Franta, DJOZY (franta@t-online.de) and Ben, DL6RAI (clx@dl6rai.muc.de) December 4, 1999

The complete reference for installing and maintaining a CLX node on your packet system.

Contents

1 Overview of the CLX System

1.1 What is CLXT . . . L o e
1.2 CLX — Another PacketCluster clone based on Linux
1.3 Hardware requirements oL
1.4 Availability e e

How to install the CLX software on your system

2.1 Usersin Jetc/passwd
2.2 Unpacking the software
2.3 Anew Kernel oL
2.4 Testing the AX.25driver L
2.5 Configuring TCP/IP
2.6 Adding Shared Library Pathso o
2.7 Configuring Postgres L
2.8 Create CLX database and tables o o
2.9 Starting CLX for the first timeo
2.10 Migrating from an older CLX installation
2.11 Migrating from a Pavillion PacketCluster installation

Description of the CLX Configuration Files

3.1 Obtaining a callsign string L
3.2 CLX parameters in ~/config/clx_paro
3.3 Cluster network configuration in ~/config/cluster_par
3.4 System messages in ~/config/adv_txt.language Lo Lo
3.5 Location data in ~/config/wpxloc.rawo
3.6 Special Characters in System messages and Help Files
3.7 Message of the day or “notice”
3.8 CLX unavailable
3.9 Multiple Connects L e

3.10 Amateur Band Boundaries

CONTENTS

3.11 Configuring the AX.25 software L

3.11.1 Using a KISS serial port

3.11.2 Using AX.25 over Ethernet oo

3.12 WAMPES and CLX

3.12.1 Installing real WAMPES

3.12.2 Using TNT’s WAMPES socket feature

3.13 Making CLX access available through telnet 0000000

3.14 Using CLX with TNO
3.15 Connect Scripts . . .

O

3.15.1 Shell Scripts as Connect Scripts L

3.15.2 Using TCP/IP

for aconnect L

3.15.3 A simple Expect Script oL

3.15.4 A more sophisticated Script L

3.15.5 A virtual one-way connection L
3.16 CLX and Callbook Data
3.16.1 The QRZ! Hamradio CDROM and other callbook data
3.16.2 The Flying Horse CDROM Callbook

3.16.3 Using online address data from the Internet

4 CLX Programs, directories and database tables

4.1 Files and Directories of CLX
4.2 Programs e
4.2.1 Server Programs ii i

4.2.2 User Programs

4.3 Database tables L
4.3.1 User defined database tables (UDTs)
4.3.2 Administration commands
4.3.3 Remote database accesso L

4.4 Files under the " /box directory
4.4.1 The batch subdirectory
4.4.2 The bulletin subdirectory
4.4.3 Theiclb subdirectory
4.4.4 The info subdirectory
4.4.5 Themail subdirectory L

5 System Administration Tasks

51 Time
5.2 Log files and Syslogd

24
24
25
25
25
26
28
29
30
31
32
32
33
34
35
35
37
37

37
37
38
38
39
41
43
43
43
44
44
44
44
44
45

CONTENTS 3
5.3 Keeping track of CLX’s Status 46
5.4 Automatically starting CLX 47
5.5 Shutting down CLX 47
5.6 The CLX watchdog e 47
5.7 Kernel Panic 48
5.8 Other regular Tasks 48
5.9 The “/tools directory L 49

5.9.1 Database administrationo 49
5.9.2 CLX Maintenance, Startup and Shutdown 49
5.9.3 Other programs 49
5.10 Admin Commands 53
5.10.1 Achieving Admin Status 53
5.10.2 Admin shell commands 54
5.10.3 Admin commands for the “/box directoryo 55
5.10.4 User Data Table Commands (Udt) 55
5.10.5 Database Maintenance Tool 56
5.10.6 Managing Distribution Listso 57
5.10.7 Checking for bad words inmail L oo 58
5.11 Superuser Status 58
5.12 Extending CLX — the “/exec/command directory 58
5.13 Extending CLX even further — the ~/exec/interpr directory 59
5.14 The interactive clx_adm tool o oo 59

6 User Administration 62
6.1 User Commands 62
6.2 User flags 63
6.3 Theus admtool 63
6.4 Connecting, Disconnecting and Lockingout 0. 64

7 Appendix 65
7.1 Release Notes 65
7.2 PacketCluster’s PCxx protocol e 65

7.2.1 Excerpt the from PacketCluster sysop manual, Appendix C 65
722 OVEIVIEW oo e 65
7.2.3 Syntax description 66
7.2.4 Protocol messages handled by the CLX software 67
7.3 Current Users of the CLX software 68
7.4 ‘Thank You! 68

1. Overview of the CLX System 4

7.5 TFrequently Asked Questions L 69
7.6 Known Bugs in the CLX software 73
7.7 Bugs and Bug Reporting 74
7.8 Wish List o o 74

1 Overview of the CLX System

1.1 What is CLX?

PacketCluster nodes have been around since around 1985. The original PacketCluster idea came from Dick
Newell, AK1A, and was running under DOS. Circa in 1992 Dick stopped the development of the PacketCluster
software for amateur radio. Many systems are still using this relatively old DOS software today.

CLX is a system which clones a PacketCluster node. To the outside user, commands and features are mostly
identical, remote PacketCluster nodes, which can be networked, don’t see the difference between a generic
PacketCluster node and CLX. So it fits well into an established network of PacketCluster nodes.

1.2 CLX — Another PacketCluster clone based on Linux

CLX, short for “Cluster Software running under Linux” has been under development since February 1994. For
many years before we were dreaming of improving Pavillion’s PacketCluster software, which was developed
in the mid-eighties. Now the time had come.

In order to add features to the cluster software it was necessary to look for a new operating system platform.
Under DOS it was practically impossible to improve anything. The 640k memory limit makes things very
difficult when it comes to writing a multi user application with up to 60 users or more, handling port
interrupts for internal and external TNCs and database queries. So we came to the conclusion to use the
Unix platform for this new project. The Linux Operating System seemed like an ideal playground for us.

Here are some of the features of CLX

e Full compatibility with the original PCxx protocol and from a users’ point of view. It comes with

multitasking and different priorities.

e The software allows loops and multiple connects without generating endless DX spots and announce
messages. This is a feature to make the network more reliable.

e CLX uses modern programming concepts like shared memory for common data, lex & yacc for syntax
checking, shared libraries to keep binaries small, remote procedure calls for inter process communica-
tion. Tt is strictly modularised with its own dedicated process for every major task.

e CLX can be extended, you can add your own programs and software.

e You may re-use the old PacketCluster database files (*.ful files). They can be imported into the new
system without too much trouble.

e CLX is based on a data base system called PostgreSQL version 6.1. Currently, the CL.X code consists
of about 60,000 lines of C++ code.

e CLX’s connectivity is very flexible. It supports the generic AX.25 drivers in the Linux kernel, uses
WAMPES, NOS, JNOS or TNOS and plain TCP/IP via telnet. You can accommodate even the
wildest network configurations including hook-up to the Internet via a dial-up line. Through the use

of universal connect scripts almost everything is possible in CLX.

2. How to install the CLX software on your system 5

First on-air experiments started in late May (1994) under the callsign DBOPV-6, which now has become
DBOCLX. Tt currently runs on Linux Version 2.0.25 with Alan Cox’s and Jonathan Naylor’s AX.25 kernel
driver and a KISS connection to the local digipeater.

A current list of CLX users can be found in 7.3 (CLX User List).

1.3 Hardware requirements

CLX runs on PC 386-40 with 8 MB memory. Well, it creeps. It sure loves a little more CPU power. A
typical production-level CLX system like DBOMDX has a Pentium-233 and 64MB RAM. At DBOCLX, which
is rather a low-profile installation, we currently have a 486-100 with 32 MB RAM and 500 MB disk space.

For an average Linux installation you will need about 200 MB. CLX is about 5 MB after the installation but
the data grows quickly. If you keep log files, these can easily fill up to 50-100 MB. So 500 MB is certainly

no luxury.

For a connection to the the external world you can either use a KISS TNC on a serial port, WAMPES,
AX.25 over Ethernet or even plain TCP/IP.

1.4 Availability

CLX is available by anonymous ftp from the following address:
ftp://ftp.funet.fi/pub/ham/uniz/Linuz/cluster/clx

This site is mirrored by many other sites world wide so you may pick up CLX from another place. Be aware,
however, that ftp.funet.fi is the place where the most recent version of CLX usually gets uploaded first.
Thanks for the ham-admins of ftp.funet.fi for the nice service they provide to the ham community and

we hope that we will be able to continue using ftp.funet.fi as our main distribution site.
KBSEHT has offered to make CLX available in the US under the following address:
http://www.timsnet.com/pub/clr

2 How to install the CLX software on your system

The installation of the CLX software requires some knowledge of Linux and Unix in general. It is not an

easy task.

Here’s a checklist for you:

I know how to use an editor (vi/emacs/joe)

I know how to add new users

I know about tar, zcat and gzip

I know about TCP/IP, networking, ping

I know about syslogd

I know how to make a new Kernel

I know about the 1ilo boot loader

I know how to add commands to /etc/rc.* or /sbin/init.d

2. How to install the CLX software on your system 6

e I know about crontab entries
e I know about the dynamic linker 1d.so and shared libraries
If you can say yes to all of the above, you are prepared to install CLX. If not, you better get yourself a book

about Linux/Unix and play around with your system to become familiar. This may take some time (weeks,

months).

This version of CLX is glibc-based. That means, no longer will it require you to make symbolic links and
find a special version of libc.so.5 as it used to be in previous versions. However, CLX will no longer run on
an old libc.5-based system.

For CLX to run, the following software packages must be installed on your system.

e Per]l (most CLX tools are written in perl)
e Expect which requires Tcl (if you want to write your own connect scripts)

e Postgres (CLX data storage is based on Postgres)

From CLX version 5.00 Postgres is no longer part of the CLX distribution. We used to have Postgres along
with CLX for many years but lately Linux distributions come with rather current Postgres packages and so
the hassle to remove a pre-installed Postgres from a new Linux system has become bigger than the benefits
of providing Postgres along with CLX. So the decision was made to leave it out and you have to install it

for yourself.

2.1 Users in /etc/passwd

CLX needs one new user in your /etc/passwd:

User Group Home Directory UID

It is necessary to add the clx_us before you unpack the software, so the files will have correct ownership

and permissions. The UID is chosen randomly, it does not really matter.

2.2 Unpacking the software

The CLX software comes in a single huge .tgz file. The file should be installed as follows:

cd /
tar xvzf clx_XXX.tgz

This will unpack the CLX software in the directory /usr/local/clx. You will need approximately 5 MB of
disk space to install it.

You have now completed step one of the CLX installation! Fine!

2. How to install the CLX software on your system 7

2.3 A new Kernel

You need a Linux kernel of version 2.0.36 with the following drivers/components:

e System V IPC

TCP/TP networking

Amateur Radio AX.25 Level 2 (optional)

Radio network interfaces (optional)

Serial port KISS driver for AX.25 (optional)

BPQ Ethernet driver for AX.25 (optional)

Earlier or later kernel versions may or may not work. Earlier versions required patches (called ax25-module14f
or the like). We are currently using 2.0.36 at DBOCLX. The 2.0.36 kernel sources come with the AX.25 drivers
in place, but they must be activated.

Currently T am not aware of how the 2.2.x kernels work with AX.25. There used to be some problems which

may be fixed now.

If you got to compile a new kernel, please consult your Linux distribution manual. It is usually a sequency

of "make config, make dep, make".

Congratulations! You have now finished the second step of the CLX installation procedure.

2.4 Testing the AX.25 driver

CLX does not require you to use the AX.25 kernel driver. If you wish to do so, you should now make sure

everything works. If not you may skip this section and continue with the next one.

To check whether the newly created kernel driver is working we will make some tests. First you should get
the most recent AX.25 utility package. This package contains programs which will allow you to make use of

the kernel drivers. Without them, the drivers are just sitting in the kernel doing nothing.

The old version ax25-utils-2.0.12c.tar.gz dated December 28, 1996 is no longer supported and

should not be used any more. The current utilities are in a file called ax25-2.1.42a.tgz available from
ftp://ftp.pspt.fi/pub/ham/packet /linuz/ax25.
Grab them, compile them and install them in the default directories using make install.

If you are using a 2.1 kernel, you could just go and use the new utilities without patching the kernel. There

is some information regarding this subject in the AX25-HOW'TO document, available, for instance, from

http://sunsite.unc.edu/mdw/HOWTO/AX25-HOWTO.html.

Now we must configure ax25d. Go to the /dev directory and make a soft link from the ttyS? where your
TNC is connected to /dev/tnc:

cd /dev
In -s ttySO tnc

Switch your TNC into KISS mode. With my TNC2 clone running WASDED firmware, T use the following

command:

echo -e "\015\015\033@K" > /dev/tnc

2. How to install the CLX software on your system 8

The TNC should signal the transition into KISS mode by flashing the CON and STA LEDs three times.
After that you should observe that the CON LED keeps flickering very hectically. This is a good sign! If it
doesn’t, your TNC is probably not in KISS more or it behaves differently.

Now edit the file /etc/ax25/axports. You must specify your “outgoing” callsign for the different devices
you have. Each TNC device gets one line in that configuration file. I have just one TNC connected so my
file contains only a single active line:

/etc/ax25/axports

#

The format of this file is:

#

name callsign speed paclen window description

#

kiss DL6RATI 9600 255 4 DBOAAB Link (438.300)

end of /etc/ax25/axports
Now start kissattach to bind the TNC port to the kernel driver:
/usr/sbin/kissattach /dev/tnc kiss

Note that “kiss” is the symbolic port name which is referred to in the /etc/ax25/axports file. You may
give it any name.

kissattach should say something like: “AX.25 port kiss bound to device ax0”. However, if you get the
error message “TIOCSETD: Invalid argument”, you forgot to add the Serial Port KISS driver for AX.25 to
the kernel.

Now start listen and you should be able to monitor some traffic on the channel:
/usr/bin/listen
Port kiss: AX25: DC1SLM->DBOAAB v DK1KMR* <RR R R3>

Port kiss: AX25: DBOAAB->DCISLM v DK1KMR <I C S3 R6> pid=Text
0000 The quick brown fox

Port kiss: AX25: DB6MK-1->DG7DAH-1 v DBOAAB <RR C P R6>
Port kiss: AX25: DG7DAH-1->DB6MK-1 v DBOAAB* <RR R F R6>

Port kiss: AX25: DB6MK-1->DG7DAH-1 v DBOAAB <I C P S7 R6> pid=IP
IP: len 44 44.130.56.134->44.130.56.21 ihl 20 ttl 64 prot TCP
TCP: 1489->119 Seq xe86f491d SYN Wnd 31744 Data 4

0000

Port kiss: AX25: DG7DAH-1->DB6MK-1 v DBOAAB* <REJ R F R6>
~C
Interrupt it with ctrl-C.

We can now try to make a connect with the call program. Before, I had to adjust my TX delay parameter
slightly to make the program work. At DBOAAB only very short TXDs are accepted, otherwise one will
receive a message saying: “I'X Delay too long”. Adjusting the TX delay is done with the kissparms program.

/usr/sbin/kissparms -p kiss -t 150

2. How to install the CLX software on your system 9

Then give it a try:
/usr/bin/call -r kiss dbOaab

GW4PTS AX.25 Connect v1.11
Trying. ..

You should see your PTT LED go on and off and after a while you should succeed to connect:

*%% Connected to dbOaab

Rawmode

PC/FlexNet V3.3e - Muenchen/Fachhochschule - PR56/RS36 - 9600Bd FSK
=>

Congratulations! You have now mastered step three of the CLX installation! After having disconnected, you

may kill the kissattach program still running. We don’t need it at this time.

2.5 Configuring TCP/IP

CLX needs TCP/TP to communicate. Theoretically, it would be possible to have several modules of CLX

running on different machines as they are all using the same mechanism.

All what it needed now is that you can reach yourself by TCP/TP. This is probably working already. Try

the following command:
ping localhost

If you receive the following, everything is in order and you can continue with the next step. Use ctrl-C to

abort ping.

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 tt1=255 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=1 tt1=255 time=1 ms

~C

--- localhost ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 1/1/1 ms
However, if you get the following answer, something is not yet set up correctly.

PING localhost (127.0.0.1): 56 data bytes
ping: sendto: Network is unreachable

ping: wrote localhost 64 chars, ret=-1
~C

In one of the rc files in /etc or /etc/rc.d (depends on your Linux installation) you must activate networking
with the following commands:

ifconfig lo 127.0.0.1
route add localhost

See your Linux documentation for details. Having mastered this, you have now completed step four of the
CLX installation.

2. How to install the CLX software on your system 10

2.6 Adding Shared Library Paths

With version 3.00 of the CLX software, we have introduced a shared library image in the ~/1ib directory.
For shared libraries to work in general, it is necessary to enable the dynamic linker 1d.so to find these

images at runtime.

Generally under Linux there are several ways to get around the problem:

1. setting the $LD_LIBRARY_PATH environment variable
2. make symbolic links to the default directories /1ib or /usr/1ib
3. Add the paths to /etc/1d.so.conf

4. Use statically linked programs

Option 3 is the recommended way because this gives flexibility and should not be a problem. As root, edit
the file /etc/1d.so.conf

vi /etc/ld.so.conf

and add the following line
/usr/local/clx/1ib

to the bottom of the list. Then save the file and inform 1d.so to update its cache:
ldconfig -v

It should now list the new directorie. You have now completed step five of the CLX installation.

By the way, you should remember that running this command after every update of the 1ibclxccl.so is

mandatory to make the programs see the new library.

2.7 Configuring Postgres
The Postgres package should be installed on your system but it needs some configuration before it can be
used for CLX.

With the current SuSE 6.2 distribution I had to install two packages, namely postgres and pg_ifa. The
second package contained interface programs to Postgres like psql which is used in many CLX scripts. Be

sure to check this.

The next step is to initialize the database (if it has not been initialized any time before). Become user

postgres and run initdb.

su - postgres

$ initdb
$ D
#

Now, as root, start up the postmaster process. This is done using a startup script which should have been
installed along with the postgres package.

2. How to install the CLX software on your system 11

/sbin/init.d/postgres start
Be sure that a program named postmaster has started up now.

ps auxw | grep postmaster
root 661 0.0 0.6 1208 416 7 S 10:18 0:00 grep postmaster
postgres 235 0.0 1.5 4148 1000 7 S 08:34 0:00 /usr/lib/pgsql/bin/postmaster -i -o -F -D/var/]l

Here is an important detail: Check the options by which postmaster was started. The -o option allows
passing options to the postgres program which is later called from within CLX. Here, the -F option states
that fsync() is not called transaction. This parameter improves performance and makes your disks run more
quiet but carries the risk of data loss in case of a power outage or system crash. You must decide if you

want one or the other.

Also note that Postgres keeps its data in a directory pointed to by the $PGDATA environment variable.
This directory should sit on a disk with a lot of space since this is the place where all the CLX data goes to.

Again, as user postgres, you must add user clx_us to the Postgres users. For this, become user postgres
and use the program createuser to add a new user and allow it to create databases and new users. clx_us
must have Postgres superuser privileges in order to perform some of the essential functions like import-

ing/exporting tables from and to files.

su - postgres

$ createuser

Enter name of user to add ---> clx_us

Enter user’s postgres ID or RETURN to use unix user ID: 101 ->
Is user '"clx_us'" allowed to create databases (y/n) y

Is user '"clx_us'" allowed to add users? (y/m) y

createuser: clx_us was successfully added

$

2.8 Create CLX database and tables

Now we are ready to create CLX’s database tables. Become user ¢lx_us and run the clx_db script:

su - clx_us
$ clx_db
This will bring up a number of messsages where you can see that tables are being created.

If you have any old data to reload (when you are coming from a previous installation of CLX), do so now

using the bup_db script. If this is a new CLX installation you can skip the following step.

$ cd backup
$ cp ../../clx.old/backup/* .
$ bup_db -r

This restore process may take a while, depending on how many records are in your tables. If you have many
users and lots of DX information, this will take even an hour or two. To monitor the process, check out the
size of the database files in the directory $PGDATA/base/clx_db.

Create the index files on the database tables. This too might take quite a while:
$ clx_idx

Now we are done with everything and ready to start up CLX for the first time.

2. How to install the CLX software on your system 12

2.9 Starting CLX for the first time

We are now ready to start CLX for the first time. You might want to edit the default config file in
~/config/clx_par but if you've followed the instructions so far, you should not need to make any changes.
Leave the callsign string as it is now, the callsign will be XX0XX.

Now as clx_us, start CLX with the following command:
$ clx -u
You should now see CLX coming up for the first time.

Reading /usr/local/clx/config/clx_par.

Decoding callsign.
*** CLX System Parameters *kx*

callsign: xx0xx
database: clx_db
interface: AX25

Checking directories and file permissions
Clearing shared memories.

Clx coming up...

clx_ctl Shared Memory managerup
int_com Internal Communications Manager .. up
snd_ctl Transmit Spooler .. up
usr_ctl User Administration .. up
iu_com Inter-User communication .. up
icl_com Inter-Node communication .. up
usr_req User Database Interface .. up
mb_ctl Mailbox Controller .. up
udt_mng User Data Table Manager .. up
usc_mng User Commands Manager .. up
usr_dlg User Dialog manager .. up
bbs_if BBS interface .. up
rm_disp Received messages Dispatcher .. up
rcv_ctl Received messages Spooler .. up
con_ctl AX.25 interface .. up
Clx is up.

$

When CLX is running, you will be returned to the $ prompt. You can now log into CLX with the term_usr
program. CLX should greet you with a message and then display the c1x > prompt.

$ term_usr
Hi om, Tere is XXO0XX! a Linux-PacketCluster node running CLX...
xx0xx-16 de xx0xx 4-Dec-1999 11457 clx >

Now you can try a few commands, like SH/US, DX, SH/DX, SET/NAME etc. Logout with “BYE”.

Shutdown CLX with the following commmand:

2. How to install the CLX software on your system 13

$ clx -s

Congratulations! You have successfully installed CLX on your system. If you are now willing to run CLX

on the air, continue with section 3 (Configuration) further down below!

2.10 Migrating from an older CLX installation

If you are migrating from an older CLX installation you will probably be interested in preserving some of
the data you have acquired and some of the configuration work you have made up to that point. Here is a

step-by-step description how you can save your previous work.

Basically the migration is easy as all user data is contained in either the database tables or the ~/box directory.
Additionally, your configuration is stored in ~/config/clx_par and probably in “/config/cluster_par.
So these are the things to backup.

1. Shutdown CLX and backup the user data

$ cd
$ clx -s
$ bup_db -s

The bup_db script will dump all database tables from a previous version and additionally store the
mailbox messages in a .tgz file.

2. Login as root and rename CLX’s home directory to clx.0ld. We will need to read some files from
there later. Now unpack the CLX distribution from the archive.

cd /usr/local

mv clx clx.old

cd /

tar xvzf clx_XXX.tgz

3. If you want to replace the Postgres database system or if database structures within CLX have changed,
you must perform the steps for initializing the CLX database as described in 2.6 (Configuring Postgres).

You should consult the CLX release notes to decide if this step is necessary or not.

When you are done, you should finish with the new postmaster process running and the CLX tables

newly created, data read back in and index files created.

4. Go to the “/config directory and copy the old configuration files there. Edit the old one and add
anything which you feel is necessary.

cd "/config

mv clx_par clx_par.sample

cp ../../clx.old/config/cluster_par .
cp ../../clx.old/config/clx_par .

©hH PH B PH B

diff clx_par clx_par.sample

Also, you might be interested to copy the old ~/.profile from the ~/../clx.o0ld directory, but watch out

for any changes before you overwrite the default “/.profile.

This completes the migration steps. Easy, no?

3. Description of the CLX Configuration Files 14

2.11 Migrating from a Pavillion PacketCluster installation

The original Pavillion PacketCluster software and CL.X have very little in common when it comes to programs.
None of the original programs is working with CLX, database structures are quite different so generally
installing CLX means starting from 0.

However, to make your and your users’ lives a little easier we provide a migration tool for data.

e The read_akila program to import the files DX.DAT, OPERNAM.DAT and WWV.DAT into CL.X tables. The
DX.DAT at DBOBCC, for example, contains over 300,000 records of DX spots ranging back into the
year 1992. This is quite a lot of useful DX information worth saving. The same is true for the WWV.DAT
file, which holds records of solar activity over a number of years. OPERNAM.DAT contains names and

location data of your users. Save them to save your users having to re-enter this information.

Also read_ak1a is used to read QSIL information data into the gs1_mng table and also general database
files from Pavillion. In CLX, data in the QSL database table is special in such as way as the information
is searchable in two ways, which makes it different from other .ful tables. Firstly, you can search by
DX call but secondly, you can also search by QSI. manager. This allows you to retrieve a list of DX

stations for which a QSI. manager is responsible.

Details for using the read_ak1a utility are described in 5.9.3 (read-akla).

3 Description of the CLX Configuration Files

The CLX configuration files reside in the ~/config directory. Here is where you have to specify your
configuration and make changes.

3.1 Obtaining a callsign string

Why an encrypted callsign? Well, we have taken this approach to keep track of who is using our software.
That is, if you want to use CLX on the air you need to have a real callsign. This is when you have to contact
us. You can install the software, make tests etc. with the default callsign “XX0XX” which is encrypted as
“WpbANhEQuh;”.

But then, when you need a real callsign, write an email message to clz@dl6rai.muc.de sending a screen dump
of the startup messages to us. This will be accepted as a proof that you have put some work into the project
and are now to be rewarded with a callsign.

How do you do a screen dump? Many people seem to have difficulties with that. So here is what we want:

$ check > proof.txt
$ clx -u >> proof.txt

Then mail this file to us, noting which callsign you want encrypted.

Email is also the best way to report bugs and problems and receive support. We use this means of com-
munication because it is very fast and reliable and pretty common in the mean time. Writing letters and

sending out disks is too much trouble for us.

As a good resource, you may also subscribe to the CLX mailinglist. Thanks to Heikki Hannikainen, OH7LZB,
for running the list server for us. If you wish to subscribe, simply send a message to majordomo@lists.hes.iki.fi
with an empty subject. In the message body put the following line:

subscribe clx

3. Description of the CLX Configuration Files 15

From then on you will be on the list and receive any mail addressed to the mailing list address. Also you
may send questions, proposals ideas to clr@lists.hes.iki.fi. If you ever wish to unsubscribe from that list,
again send a message to majordomo@lists.hes.iki.fi with an empty subject line. The message body should

contain one line like this:
unsubscribe clx

Please read the documentation thoroughly before you start to ask questions.
Thanks to Heikki for providing this service for free!

Another good resource is the World Wide Convers Channel 9000 which is often populated with many Clusse
or CLX sysops. We used to be on 4791 before but on February 25, 1998 we QSYed to the new channel 9000.
If you have a WW-Convers node near you, join channel 9000, which is often entitled: CLX/Clusse SysOPs.

Tan, GOVGS, makes available the CLX Home page at hitp://www.lurpac.lancs.ac.uk/“clz. This page has
links to all the interesting places, where to download the latest CLX, additional sources for databases, beta
releases and an archive of the CLX Mailing List. Take a look!

3.2 CLX parameters in ~/config/clx _par

The parameter file is read at the start of CLX. It contains important information about your system config-
uration like callsign, SSTDs, communication interfaces etc. Please note that syntax checking for this file is
almost non-existant. So if you make an error, expect strange things to happen. This hasn’t been a problem

in the past but please be careful.

These are the syntax rules for clx_par:

e Empty lines are ignored.
e You can specify comment lines with “#”.

e Data fields may be separated by any number of blanks and/or tabs. Use them to make the configuration
file look pretty.

There are two types of parameters, that we call variant and invariant. The variant type can be changed at

runtime while invariant types cannot. For them to take effect, CLX must be shut down and restarted.

Parameters are:

e call (invariant), the encrypted callsign code for your CLX system. By default, you will have the demo
callsign xx0xx as WpbANhEOuh; in this place. Once you have received a code for your personal callsign,
you must put it in here. Beware, the ; character above is not a comment! The callsign codes are always
11 characters long independent of the length of encoded callsign. If CLX cannot decode the callsign at
startup (but if it sucessfully can decode the default callsign xx0xx) you probably have mis-spelled the
code. It is best to use the cut&paste function to get the string into the configuration file.

e sysop_info (variant). This parameter allows you to specify sysop information (your callsign, phone

number, E-Mail address or whatever) to display when users do a SHOW/SYSOP command.

e ssid (invariant), to specify an SSID to be used. From version 2.05 on callsign strings are encoded
without SSIDs so you can add your own. The old encryption strings from pre-2.05 releases remain

intact and may also be used with this feature.

e prot (invariant), the protocol to be used. At this time, only the PCxx protocol of the original Pack-
etCluster software is available.

3. Description of the CLX Configuration Files 16

e hops (variant), which is used to specify hop information for broadcast type messages. The five different

types correspond with the following PCxx protocol messages:

dx PC11
ann PC12
user PC16/PC17
node PC19/PC21
WWV PC23

and are specified like this:
hops dx/99 ann/10 user/5 node/10 wwv/99

The hops are applied to:

1. locally generated DX spots

2. DX spots coming from user-mode links

They are definitely not applied to the spots you are receiving from other nodes. These spots are just
decremented by one and if the counter is not zero, they will be forwarded as per the configuration. The
only exception is the hops_min value which can be specified on a per link basis. See 3.3 (hops_min)
for further details.

When a negative number or zero is used here, this protocol message is suppressed by CLX and never
transmitted. This way, some messages can be completely supressed, like limited protocol with Packet-
Cluster.

e merge (variant), to specify how many DX and WWYV spots should be requested from the partner node
to merge them into the database in case a link failure has occurred and spots were lost for a while. This
will make CLX generate an appropriate PC25 (merge request) message. The amount to be requested

is specified like this:

merge dx/20 wwv/5

e ps_vers (variant), to specify which PacketCluster version information is sent to the node being joined.
Default is currently 5447. The performance of CLX is not affected with this switch, so this is not to

select a specific emulation mode.
e db_name (invariant), where the name of the CLX database must be specified (no need to change it)
e db_port (invariant), port where Postgres is listening, default is the Postgres port 5432
e db_host (invariant), specify, if Postgres is running on another host, default localhost

e vacuum (variant), to specify (in minutes) how often vacuum will be called from within CLX. If your
machine is very slow or your database is very large, you might wish to set this to a big value so that
it occurrs not so often. If you do not specify this parameter, vacuum is never called (which is bad). A
problem is that when vacuum runs for a long time, the clx_watchdog (if you have it on) will time out
and shutdown clx. See 5.6 (CLX Watchdog) for further details. You could also leave this parameter

out of c1x_par and call vacuum through cron as explained in 5.7 (Other regular tasks).

e wampes (invariant), to specify if WAMPES should be used as the default interface for outgoing calls.
By default, CLX uses the AX.25 kernel driver by GW4PTS. This requires that WAMPES is installed
on your computer. See 3.12 (WAMPES and CLX).

e w_host (invariant), to specify a WAMPES host to connect. If WAMPES is running on another host,
you should specify it here. If WAMPES is running locally, you don’t need this.

3. Description of the CLX Configuration Files 17

e ax25 (invariant), can have the parameters no or outgoing. no prevents CLX from any activity on the
AX.25 kernel socket. outgoing makes CLX use the kernel socket only for outgoing calls but leaves
incoming calls to another application (in a standard Linux AX.25 configuration, a program called

ax25d is used to sort this out).

If your Linux kernel has no AX.25 support, you must specify no this, otherwise con_ctl will hang at

startup time.

e callb (invariant), to specify sub directories in the ~/callb directory which contain callbook files. See

3.16.1 (Callbook CDROM data with CLX) for any details.

e dx_lim (variant), where you can specify if DX spots older than dx_lim minutes should be ignored.
Default (if nothing is specified) is 70 minutes. If dx_lim is not specified at all, no limit exists. From
CLX version 4.04, dx_lim also works into the future, so that spots newer than dx_lim are canceled.

DX spots are neither sent to local users nor are they forwarded to other nodes.

e wwv_lim (variant), analogous to dx_lim you can specify after which time WWYV spots should be
ignored. The default is 12 hours. If wav_1im is not specified at all, no limit exists.

e dx_comm (invariant): Setting this parameter to no means that the comment field in DX spots is not
used for duplicate DX spot checking. This comes in handy for European installations where often spots
including specific national characters tended to be repeated over and again. Setting the parameter to
no allows suppressing these spots with a slight chance that some additional spots may be lost too.

e pw (variant), to specify a password for the set/priv command. The password must be between 8 and
255 long. In order for your users to be able to gain CLX admin status, they will need the password
and also a private copy of the get_pwd program. See also 1 (Achieving Admin Status).

e baycom_pw (variant), to specify a password for the pw command. The password must be 5 to 255
characters long. The first character of the password is position 1 (not 0 like some C programmers

might suppose). See also 2 (Achieving Admin Status).

e filter (variant) allows designing DX filters for users to specify. This command allows to set up a line
of notch filters for the users to chose from. The filters have numbers from 0..31 and may be cascaded
by the user. The users’ filter setup is permanently stored in the users’ us_data record.

Filters in ¢lx_par may be specified as follows:

by a frequency range

— by a frequency limit

— by mode

— by an entry from ~/config/ar _band.cd

The syntax is as follows:

(filter_number>name)specification

The maximum length for a filter name is 12 characters. A maximum of 32 filters may be defined by
the administrator. Frequencies have to be stated in kHz. Using a "/" in the specification is a logical
and. "20"/cw means take the definition of "20" from ar_band.cd and use only the "cw" band. The
double quotes are necessary to let the parser know that "20" is to be treated as a string and not as
the number 20.

Here are a few examples:

3. Description of the CLX Configuration Files 18

(1>VHF) 144000-
(2>HF) 3500-30000
(3>TOP) 1800-2000
(4>S1X)50000-52000
(5>CW) /cw

(6>20CW) '"20"/cw

A filter may also consist of several specifications like this:

(7>WARC) "30"
(7>WARC) 17"
(7>WARC) "12"

The WARC filter now contains all three WARC bands.

The most important thing about filters is that you must understand that they are used to reject
specific DX spots. An example: Specifying VHF, WARC, SSB and RTTY filters means, you will only
get CW spots on the classic HF bands 160, 80, 40, 20, 15 and 10. This is probably what users want
when the are in the contest. Or - when the CW filter is set, you will get anything but CW spots.
Specifying SSB and VHF you will only receive HF CW and RTTY spots.

e mk_fwd (variant), allows specifying which addresses should be bulletin addresses. Normally ALL and
international variations like ALLE, TODOS, TOUS, TUTTT are placed here.

e waz_ddd (variant), allows the sysop to specify a list of up to 32 WAZ zones which are to be treated as
"DX". DX spots originating from these zones may be filtered out by users using the SET/NODXDEDX
command. Also, these spots are not forwarded to other nodes which are specially marked in the

~/config/cluster_par file. See there for more details.

Please keep in mind that using this functionality, some database traffic is being generated as each spot

must be analysed and the WAZ zone of the author must be fount out.

Also keep in mind that this feature works only for outgoing (ie. transmitted) spots at your end. It
does not filter incoming (received) spots. So if you are receiving those spots and don’t want to receive
them, ask your internet link partner to set up a filter for you that prevents him from sending unwanted

spots to you.

e syslog_lev (variant) allows specifying a default syslog level for all CLX programs. The default is
now defined as 6 (all except DEBUG), it used to be 7 previously. One can use any value between 0
(EMERG) and 7 (DEBUG).

When a program is suspicious, you can dynamically change the debug level with the -1 switch. For
example

$ icl_com -1 7
would turn on the DEBUG level for the program icl_com.

e maillimit controls the maximum age (in days) a mail message can have before it will be deleted by
db_maint. If nothing is specified, the mail limit is 90 days be default. This is used with db_maint’s 6
option. See 5.10.4 (db_maint) for further details.

e loglimit (variant) specifies for how long log records are kept in the database before they get deleted by
db_maint. The default value is 20 days. This is used with db_maint’s 6 option. See 5.10.4 (db_maint)
for further details.

3. Description of the CLX Configuration Files 19

uslimit (variant) specifies for how long user records are kept in the database before they get deleted
by db_maint. The default value is 120 days. Entries with special rights (us_perm != 0) like digipeater
call signs or sysops are never removed automatically. This is used with db_maint’s 5a option. See
5.10.4 (db_maint) for further details.

dxlimit (variant) specifies for how long DX records are kept in the database before they get deleted
by db_maint. The default value is 100 days. This is used with db_maint’s 1e option. See 5.10.4
(db_maint) for further details.

annlimit (variant) specifies for how long announcements are kept in the database before they get
deleted by db_maint. The default value is 100 days. This is used with db_maint’s 1g option. See
5.10.4 (db_maint) for further details.

gslfile (variant) specifies the file name to be used with db_maint for reading in QSL information into
the QSL database table. This is used with db_maint’s 7¢ option. See 5.10.4 (db_maint) for further
details.

batchcommands (variant) specifies db_maint command options to be executed when db_maint is run

with the “batch” argument. This is a handy way to automate database maintenance jobs via cron. See

5.10.4 (db_maint) for further details.

bbs_lst (invariant) is the list of callsigns to be treated as Packet BBS systems for personal mail
forwarding. The callsigns must be separated by white space. Mailbox systems are expected to actively
connect CLX to initiate the forwarding. They are then greeted with the typical BBS forwarding
prompt. CLX itself does not start up a connection to a PBBS system. CLX currently understands the
WORLI forwarding protocol only.

As a side node, you must be sure of the callsign which is used by the BBS system for outgoing
calls. For example, the Baycom Mailbox DBOAAB-8 uses the callsigns DBOAAB-4 and DBOAAB-5
(alternatively) for its forwarding traffic. These are the callsigns that must be stated with the bbs_1st
parameter.

gsl_rr (variant) is used to specify a remote database for QST requests (SHOW/QSL) when the result was
not found in the local database. The syntax is qsl_rr: <node>/<db_name>/. A remote database
request (PC44) will be generated and sent to the remote node (which can be a Pavillion PacketCluster
systen or CLX).

Here 1s a simple clx_par file:

call: WpbANhEQuh; # Encrypted callsign
db_name: clx_db # name of the clx database
prot: pc # protocol type (pc, clx or aut)
hops: dx/99 ann/10

user/5 mnode/10
ssid: 8 # SSID to be used
mk_fwd: all alle dx dxnews
dx_lim: 60 # no DX spots older than 60 minutes
wwv_1lim: 180 # no WWV spots older than 3 hours
waz_ddd: 345 25 # ignode spots from these WAZ areas
bbs_1lst: dbOaab-4 dbOaab-5 # BBS systems for mail forwarding

gsl_rr: db0sdx/gsl # remote QSL database fallback

3. Description of the CLX Configuration Files 20

3.3 Cluster network configuration in ~/config/cluster par

The file “/config/cluster_par contains information on which callsigns are nodes, which ones have to be
actively connected and which ones build up the connect themselves. Additionally, the file contains routing
information and of what type of node the system is. Moreover, there is a parameter to denote a link either
“active” or “passive”.

This file is similar to the NODES.DAT of the traditional PacketCluster software but it contains a little more
information.

The format of this file has changed dramatically in version 4.00 of the CLX software. The name was changed
too from ~/config/cluster to “/config/cluster_par. We tried to make it a bit simpler and get away

from the hard-readable link characteristic flags. We hope you appreciate that.

These are the syntax rules for this file:

Empty lines are ignored.
e You can specify comment lines with “#”.

e Data fields may be separated by any number of blanks and/or tabs. Use them to make the configuration
file look pretty.

e Every node has its own SECTION: paragraph. A section ends with a new section or at the end of the

file.

There are a number of parameters for every single connection described below.

e section Starts a new section and specifies the callsign of the link partner on the other side.

e conn_call If the link is an outgoing connection, this optional parameter specifies, which callsign is
going to be used. If it is an incoming link, you may specify, under which callsign the remote node will

connect. This is like an alias callsign.

e conn_port This command is for AX.25 outgoing connections only. It defines which port will be used
for the outgoing call.

e conn_int This option is used to specify the type of connection. Four types are available:

ax25 kernel socket connection
WAMPES port

script from ~/exec/connect

He Ko=g

incoming connection

e conn_type With this parameter, you specify if the partner node is a CLX node or not. Available types
are:

clx A CLX node

non-clx not a CLX node

e conn_act This parameter specifies, if the connection is active or passive. For a discussion of active

and passive, please see below.

CLX can have one active and multiple passive connections into any isolated network. In Pavillion
terminology, you can replace your existing link connections with active connections and additionally

3. Description of the CLX Configuration Files 21

introduce a few passive backup links for any case. The difference is that on a passive link, CLX does
not transmit broadcast type information (DX spots, announcements) to non-CLX systems and so no

duplicate spots can be generated under any circumstances.

For a list of broadcast type PCxx messages see 3.2 (Broadcast type PCxx telegrams). Be careful when
designing your network connections here because when you are doing it wrong, you will see the good

old cluster loop in full swing!

Look at the following matrix to understand which messages are relayed by CLX if the partner node is
a CLX node or non-CLX system and if the link is active or passive:

I

I

| A-CLX | P-CLX | A-PCL | P-PCL |
o R P R R —— R R ——— S +
[Incoming A-CLX | ABC | A | BCE | - |
|message is =~ ------ Fomee - [T [R Tp—— R R +
[from a.. P-CLX | A | A I - - |
[— o o Fomm e Fomm e +
| A-PCL | ABC | A | BCE | - |
e Fomm - Fomm - Fomm - Fom e +
I P-PCL | A | A rF- 1 - |
Fom - R P R R ——— R R —— R P +

Legend:

A-CLX = Active CLX node
P-CLX = Passive CLX node
A-PCL = Active PacketCluster node
P-PCL = Passive PacketCluster node

A = DX, Announce and WWV (PC11, PC12 and PC23), no duplicates
B = other broadcast-type messages besides A:
User add/delete (PC16/PC17)
Node add/delete (PC19/PC21)
here status (PC24)
User info (PC41)
Local User Count (PC50)
C = directed messages:
Mail forward (PC28-33)
Remote Database requests (PC34-36)
Talk messages (PC10)
Remote commands (PC34-36)
File forwarding (PC40)
Remote Database requests (PC44-43)
Ping (PC51)
Initialisation commands (PC18, PC20 and PC22)

E = type-A messages previously received from a passive link

o
1}

connection and now being again received from an active link.
Generally, PCL nodes do not receive spots from passive links,

but these spots can be safely delivered to them.

Locally generated messages (DX spots entered at the local node)

3. Description of the CLX Configuration Files 22

are treated like if they came from an A-CLX node. D-type messages

are exchanged with all partners but never passed on to others.

e conn_prot Protocol type. CLX knows two:

pPc The PCxx protocol known from Pavillion Software

u the user mode

In user mode this mode, CLX makes a connection like a normal PacketCluster user, and reads the DX

spots which are received in the traditional user format:

DX de DL1SV: 7012.0 PJ5AA listening zero beat 04267

This extension makes it possible to establish link connections without the link partner having to treat
your callsign specially (i.e. putting your callsign into his NODES.DAT file). If you wish to send spots to
your link partner, you must ask him to configure your side as a node.

It is no longer possible to transmit any spots as it used to be in pre-4.01 versions. Too much trouble
with badly configured setups have led to this decision. In fact, a user mode link is always defined as a

non-clx passive link connection ignoring whatever the configuration file says.

The version reported by CLX for user mode links is 0000 so do not worry when a PC19 frame is

recevied looking like this:

PC19°0~"R3ARES~0~0000"H2"

A user mode link is reported here with RJARES.

e conn_lock Specifies if the connection is locked - i.e. disabled. Tt may be temporarily unlocked using

the clx_adm program.

e conn_ping This parameter specifies if the connection is being checked at regular intervals. Acceptable

values are yes and no.

If the protocol type is pc then a PC51 telegram is generated. In user mode (protocol type u), the CLX

software only sends the string ping 1 and expects an answer (any string) from the other side.
e conn_path

1. Connection type a or w: One or several alternate connect paths may be specified here. Simply
specify the callsigns of the digipeaters to be connected. With %-characters added to the call, the

timeout period is specified:

% =

hh =
hhle
T tole

minute
minutes

minutes

1l
WO B N =

minutes

Default time out is 1 minute. The time out for the last hop (to the final destination) can be
specified on a new line.
Additionally, the connect string to be expected must be specified.

1 = "x%% connected to"

2 = "> Connected to"
3 = "} Connected to"

Or you can specify it literally by adding it in quotation marks: dbOfsg¥%"#LINKED_TO" hererby

replacing spaces with the underscore character.

Here 1s an example:

3. Description of the CLX Configuration Files 23

dbObcc: dbOuni%2 dbOfsgil
hh
DBOBCC will be connected via DBOUNI and DBOFSG. The timeout for the connection to DBOUNI
is 2 minutes, and the string "> Connected to" must be received within this period. In the next
step, DBOFSG must be reached within 1 minute waiting for the string "*** connected to". Finally
the hop to DBOBCC must be reached within two minutes. The trigger for the final destination is

the PC18 frame received or, in user mode, any string.

2. Connection type x: Name of the program or script to be called including up to 10 tab or space
delimited parameters.

Alternate routes must be separated with the “|” character.

e hops_min (variant), allows specifying a minimum hop counter value for frames going to that link. This
parameter is the only one which affects foreign frames (i.e. not self-produced frames). The hop count
can only be increased not decreased. The format is identical to the hops parameter. However, hops_min
is specified on a per link basis (in cluster_par while hops is a general parameter (in clx_par).

e merge Number of DX and WWYV spots requested for merging when re-connecting this partner.

e waz_ddd A list of WAZ zone entries treated as DX zones. Spots originating from there (probably
transported by Internet connections) are not forwarded to this partner. If the waz_ddd: tag is not

speciefied, the default from the clx_par file is taken.
e mail_fwd Enable or disable mail forwarding to a specific node.

e ping_to This variable decides the link check mode for the connection. There are three cases:

If it is not specified, the link check to the remote system is based on either data or a ping answer

received from the remote system.

If ping_to is set to 0, a ping is sent every 300 seconds. Also, every 300 seconds a check is made if the
previous ping was answered within 300 seconds or if any other message was received from the other

end - else the link will be disconnected.

If ping_to is set to a value greater 0, this value will be taken as the maximum allowed response time
(in seconds) for a ping frame. A ping is sent 300 seconds and at the same time a check is made if the

ping_to timer has been exceeded.
conn_ping overrides these settings. If conn_ping is off, no link checking is active.

To resume: there are two modes of link checking available. One that is triggered by normal PC
telegrams (any data activity on the link) and one which takes care of the ping time only (how much
time does it take for the answer to arrive). Both modes can be used at the same time to reliably check
the link connection. With the first mode you would make sure that some activity still exists, with the
second you could automatically cut the link and restart it when the response time has become too

large.

e init_wait Specifies the number of seconds CLX waits after the connection is established, before

sending the PC18 initialisation frame.

3.4 System messages in ~/config/adv_txt.language

This is the system messages file which may be used in its original form or it can be adapted to your local
language. Tts function is similar to MESSAGES.DAT of the original PacketCluster software.

The maximum length of the strings contained in every message is 512 characters. This may include \n and
other printf-style symbols. You must put this into a single line, however, the message may be structured
with additional \n’s so the user will receive several lines in a single message.

3. Description of the CLX Configuration Files 24

The following macros are available:

\call = User’s callsign

\ccntr = Number of links currently established
\fulldate = Full Date

\hcall = User’s callsign with here/nohere status showing
\n = Newline

\ncntr = Number of nodes reported in the network
\nodecall = Your CLX callsign

\ring = Bell character (ctrl-G)

\shrtdate = Short Date

\since = Time when CLX was started

\t = Tabulator

\time = Current time

\ualm = The current alarm string (if any)

\ualv = The current alive character

\uann = Show if user has ANNOUNCEMENTS ON or OFF

\uansi = Show if user has ANSI on

\ubeep = Show if user has BEEP turned on

\uchs = The character set selected

\ucntr = Number of users logged in locally

\udxd = Show if user has DXDEDX activated

\udxf = list of filters currently active

\udx = Show if user has DX spots on

\uex = The current exit string

\ulog = Show if user has Login/Logout messages on

\umax = Maximum number of users logged in since last start
\uptime = Uptime in days, hours, minutes and seconds - format

string in adv_txt message 011.

\version = CLX version number

Some message numbers have flags. These have the following meaning:

* This message only goes to the error log. It is always

taken from adv_txt so there is no reason to translate it.

7 This message will not be displayed if there is no
text.

The translated adv_txt files must be located in the ~/config directory and be named adv_txt.language.
We have included several language files in this directory. adv_txt is a fallback file, which is used in case
no specific language file is available or if the message number is marked with an asterisk. When the user
has not specified any language, the file adv_txt.default is used. This should be a symbolic link to the
language normally used on your system. If the user has specified a different language with the set/language

command, then the file adv_txt.language is used.

Please check the files for completeness and send any corrections of it back to us to be included with future
releases of CLX! Again, note that the messages having an asterisk are internal messages only and are always

taken directly from adv_txt.

When you are translating or adapting a message file, it is convenient to have both the original and the
translated messages near each other so that you can make a comparison. For this, we have included a tool
called check_adv_txt in the “/tools directory. Use this tools as follows:

$ cd “/config

3. Description of the CLX Configuration Files 25

$ check_adv_txt adv_txt.italian

With the command line switch -m you can force it to show only messages which are missing in the translated

file.

3.5 Location data in ~/config/wpxloc.raw

The file “/config/wpxloc.raw originates from the PacketCluster software and contains a huge number of

detailed location information for different DXCC countries, islands states and regions of the earth.

The synax of this file is as follows:

_________ T

Column | Meaning

_________ A e e e

1 | Prefix or Prefixes

2 | Full Country Name

3 | DXCC country number

4 | ITU zone

5 | CQ zone

7 | Time zone (negative means east)
7-10 | Latitude (South is negative)
11-14 | Longitude (East is negative)

15 | Follow up flag (* - optiomal)

16 | DXCC country flag (@ - optiomal)

_________ T

Comment lines are starting with 1.

So the file looks like this:

!Updated many times by DJ3IW, DK20Y, DBOSPC 1991,1992,1993,1994,1995
1

1A S.M.0.M.-1A 268 28 156 -1.0 41 54 O N 12 24 0 E ¢}
1B NoDXCC-(illegal) 288 39 20 -2.0 3500N3300E

1S Spratly-Is-1S 269 50 26 -8.0 8 48 0 N 111 54 0 E [
3A Monaco-3A 270 27 14 -1.0 43 42 0 N7 23 0 E [}

As many grown-up PacketCluster Sysops have put considerable work into maintaining this file, CLX continues
to use this data in the SHOW/SUN and SHOW/HEADING commands. However, the data is converted into a slightly
different form and then called “/config/location.dat at the startup of CLX. “/config/location.dat has
the following format:

_________ B S
Column | Meaning

_________ A o e
1 | Prefix

2 | Full Country Name

-5 | Latitude

8 | Longitude

9 | Time zone

_________ A e e e e e =

3. Description of the CLX Configuration Files 26

Whenever “/config/wpxloc.rawis changed, however, “/config/location.dat will be created anew. There
is nothing you need to do about this, excepct adding new countries and regions from time to time if you so

desire. Do not touch ~/config/location.dat as this will is generated automatically.

3.6 Special Characters in System messages and Help Files

CLX understands national characters and is able to transmit them depending on your character set. You
must code the special characters according to the ISO 8559 conventions, that is ä ; for the letter & etc.
This should be familiar to everyone writing HTML code.

The special characters CLX understands are defined in the file “/config/char_set. In that file the corre-
sponding character codes for the different character sets available must also be specifed. Currently we have
four, the Latin-ISO (used by Linux and MS-Windows), IBM (used by MS-DOS), DIN (which is using the
rare characters {, }, |, [,],\ and ~ for national character encoding — Baycom used this convention) and one

with uses ASCII transcription.

Currently, the system messages in ~/config/adv_txt.default (which is a link to your default language
file), the output of external programs and the help files will be transposed.

To switch languages, users may use the SET/LANGUAGE command, to switch character sets use SET/CHARSET.
For more help take a look at the user help files.

3.7 Message of the day or “notice”

CLX allows setting of a so-called "Message of the Day". This message is displayed to every user logging
into the system. This feature makes it possible to announce meetings or special events to the users in a

convenient way.

To enter a new message of the day, you should use the following commands:

set/motd
Now enter the new message
/exit

A new file motd gets created in the “/box/info/etc directory.

It is possible to automatically set the MOTD with a program which is being called through cron every day
at 00:01 UTC. An example of such a program is in the mk_motd script in the ~/tools directory. This script
calculates the date of the regular DX meetings of the B.C.C. in both Niirnberg and Miinchen and sets the
appropriate message. This way, club members are reminded well before the meeting happens. Feel free to
expand this script to make it useful for you. Some time in the future, T will make a more general tool -

currently all is pretty hard-coded in that file.

New wusers, who have not logged in any time before optionally are displayed the file

~/box/info/etc/motd_new if it exists. A new user is a user without a record in the database.

3.8 CLX unavailable

To inform your users of the node being temporarily unavailable, there is a file which is displayed
when net_usr does not find CLX running. First, net_usr tries to find $HOME/config/clx_etxt, then
/usr/local/etc/clx_etxt. If both fails, it will display the message c1x unreachable.

Also users coming in via the clx daemon clxd (TCP/IP) will be sent this message when CLX is down.

3. Description of the CLX Configuration Files 27

3.9 Multiple Connects

A word about multiple connects: CLX accepts multiple connects from the same callsign using different
SSID’s. In a CLX Cluster you may connect each of the single nodes using the same callsign (even the same
SSID). However, connecting the same node twice with the same callsign is not possible. CLX is using the
callsign as a communication channel identifier. What will happen, whenn you’re connected as, let’s say
DL6RAI, and start up another session as DL6RAI? The old DL6RAT will receive the greeting message, the
new DL6RAI will receive nothing. All commands he enters are answered to his first connection. And when

he tries to log out, the nr. 1 connection is terminated.

3.10 Amateur Band Boundaries

Amateur band boundaries are defined in the ar_band database table. This information may change or may
be different in your country. Make the appropriate corrections to the file “/config/ar_band.cd and then

issue the following command (as clx_us, with postmaster running):
$ db_maint a
You may also add new modes and frequency boundaries. You must then follows these rules:
e Every distinct band must have a single b_symb attribute. The SHOW/DXSTATISTICS command uses

b_symb.

e It can have multiple b_syn attributes. For example the 15-m-band can be addressed as 15 or as 21 in
a SHOW/DX command. SHOW/DX uses b_syn

3.11 Configuring the AX.25 software

With the AX.25 utils after version 2.0.12, some changes were necessary from previous versions. Where CLX
used to communicate directly with the kernel drivers, we have now ax25d as a super daemon launching
applications such as axspawn, a personal messages system or — in our case — net_usr to connect to CLX.
Please follow the instructions coming with the AX.25 utils package.

3.11.1 Using a KISS serial port

For a simple and plain CLX installation the following steps should be necessary:

1. edit /etc/ax25/axports and put your callsign for outgoing connects there. Give the interface a name

which you will refer to later. I called mine “kiss”.

2. edit /etc/ax25/ax25d.conf and put the following lines in it:

[kiss]
parameters 1 10 * ¥ x 0
default 7 10 2 900 % 15 - clx_us /usr/local/clx/bin/net_usr net_usr -x %s

This boils down to: Whenever someone calls DL6RAI-7 on interface [kiss], start the program
/usr/local/clx/bin/net_usr with the switch “-x” (which converts CR/LF) and his callsign including
SSID as a parameter. The process is started under the UID of c1x_us.

3. Make a startup script in /etc/ax25 which is called when your system boots. My ax25startup looks
as follows:

3. Description of the CLX Configuration Files 28

#! /bin/sh

set -x

echo -e "\015\015\033@K" > /dev/tnc
/usr/sbin/kissattach /dev/tnc kiss
/usr/sbin/ax25d -1

sleep 3

/usr/sbin/kissparms -p kiss -t 150

The echo command switches my TNC into KISS mode. Then kissattach is being started on the
TNC device. Then ax284 is started with the “-1” option which makes the AX.25 daemon send log
messages to syslog. Then we must wait a little before changing KISS parameters with kissparms as

was necessary here (TX delay).

Also T have a script for shutting down the AX.25 programs:

#! /bin/sh

set -x

kill ¢/bin/ps aux | awk ’/n\/ax25d/ {print $2}°°¢
kill ¢/bin/ps aux | awk ’/n\/kissattach/ {print $2}°°¢
echo -e "\300\377\377\377\300" > /dev/tnc

3.11.2 Using AX.25 over Ethernet
Another way to use the AX.25 software is with the BPQ encapsulation. This allows us to send AX.25 packets

via Ethernet and is compatible to Flexnet’s ETHER . EXE module from DK7WJ (which additionally requires a
packet driver) and probably software from G8BPQ. For this to work on the Linux side, you just add another

line in the /etc/ax256/axports file looking like this:

[ether]
ether DBOCLX-1 19200 255 4 ethernet

Additionally, you must configure the ethernet port, in most cases etho:
/usr/sbin/axparms -dev ethO ether

And in the /etc/ax25/ax25d. conf file we should add the port ether to the configuration:

[ether]
NOCALL * k k kx ¥ x L
default * * * % * * - clx_us /usr/local/clx/bin/net_usr net_usr -x %s

Now we can connect the CLX port DBOCLX-1 via ethernet.

3.12 WAMPES and CLX
3.12.1 Installing real WAMPES

At this point in previous releases of the CLX software, we had a chapter on how to get, compile and install
WAMPES. We felt that this information was slightly outdated now. So we left it out. If you really have to
use WAMPES for one reason or another, you will probably know better how to install it.

To make CLX run with WAMPES, you only specify one key word in the clx_par file, that is:

3. Description of the CLX Configuration Files 29

wampes:

You may, if desirable, specify a port number after the colon. This will allow you to change the port number
which CLX uses for communicating with WAMPES. The default WAMPES port is 4718 and need not to be
specified.

It is also possible to specify a WAMPES host if your WAMPES installation is running elsewhere. For this
use the keyword

w_host:

in the clx_par file.

Due to WAMPES’ philosophy, SSIDs are not reported down (or up?) to the application running on it.
Due to this, when using WAMPES, node callsigns must be unique, there is no way to have DJOZY be a
normal user and DJOZY-7 a CLX node. This is true only for incoming connects. When going out through
WAMPES, you can chose any SSID you like.

This also leads to the problem that users’ SSIDs are generally ignored and you cannot be connected to two

adjacent nodes which have a link between them using the same root callsign.

This is a WAMPES “feature” and cannot be changed by CLX.

3.12.2 Using TNT’s WAMPES socket feature

TNT, written by DL4YBG, is a very convenient packet hostmode program for Linux. New versions are
available from http://www.snafu.de/ “wahlim TNT runs on the Linux console as well as in an xterm under
X11. One of the features of TNT is its ability to provide a WAMPES compatible socket interface for outgoing
connects. This feature is also known as TNT’s NETCMD interface. Along with the autostart feature, which
makes TNT automatically start an application when a specific SSID is being connected from outside, TNT

can be used as both an interface and a control terminal for CLX.

To enable CLX operation via TNT, you must specify the following two lines in the tnt.up file which is
executed when TNT starts up:

socket netcmd *:4718 dl6rai-7

autostrt on

The first line makes TN listen on port 4718. If a connection is made, the application may use the command
“connect ax25 dbOaab” for example to establish a connection to DBOAAB. You can check this out yourself
by simply doing a “telnet localhost 4718”.

The second line enables the autostart feature for incoming connects. If — for example — the channel with
the callsign DL6RAI-7 is being connected by DK20Y, TNT will set the environment variable $CALLSSID to
dk2oy and spawn a shell running the script clx_sh. For this you create a file called autostrt.tnt in the
TNT directory and add the line:

dl6érai-7 run clx_sh

to it.
The file c1x_sh is a shell script located in . ../tnt/bin (or whichever is defined as the TNT run_dir) which

should contain the following two lines:

#!/bin/bash
exec /usr/local/clx/bin/net_usr ${CALLSSID}

3. Description of the CLX Configuration Files 30

Also you must have some channels programmed with that very callsign you like to use. You can do that by

putting several lines like

channel 1
mycall dl6rai-6
channel 2
mycall dl6rai-6

into your tnt.up file.

All of this is a little confusing. Again, these are the steps you have to do:
1. Make TNT listen on a socket port
2. enable the autostart feature

Create autostrt.tnt

-~

Create a script called ¢1x_sh in TNT run_dir (default: .../tnt/bin)

Have some packet TNT channels programmed with the callsign you want to be connectible under

Ot

When using the w_host variable in clx_par and setting the $CLX_HOST shell variable or calling net_usr
with the “-h” switch on the remote host, you might even have CLX and TNT running on different machines.
DG4MMI reports that he got TNT and CLX running this way very nicely. DL1RF reported good success
with TNT 1.1a3, DPBOX and CLX 2.07 all running on the same machine. net_usr is a statically linked

program, it only needs 1libc.so.5. So the program may be used on a different computer.

The advantage of TNT+CLX is that you get control over each communication channel as you can see what’s
going on by switching TNT channels. You may watch the PC-PC communication going on or you can see
how and why routing scripts work or fail. Generally it gives you more control over your CLX installation

and makes it more transparent.
Thanks to DL4YBG for making this feature available!

DL4YBG has slightly extended the WAMPES socket interface so that after the target callsign, one can
specify the source callsign to be used on an outgoing connect through TNT.

The new syntax is as follows:

CONNECT <transport mode> <destination callsign> [source callsign]

If no source callsign is specified, the default callsign is taken from the NETCMD interface.

Additionally, when starting an outgoing connect via this interface, TN'T uses its own routing table and after
establishing the connection activates the socket interface. As a side note, this also automatically changes the
source callsign of a AX.25-connection with this callsign already exists to the destination. So you just need

not care about it at all.

The setup of the routing file (routes.tnt) is a little tricky. You must make sure that the destination callsign
again shows up with a T> tag at the end, like in the following example:

T>DBOSUE-7 CLX; F>dbOaab N>dbObro N>db0il T>dbOsue-7

If it doesn’t, then CLX will never receive the final connect message and the connection will not be established.
When setting this up first, try making a connect manually using : XCONNECT and watch the upper status line
switching to the destination callsign when that is reached. In the above case it should look like this:

Ch:05 Stat: IXF wid DBOSUE-7

3. Description of the CLX Configuration Files 31

3.13 Making CLX access available through telnet

With version 2.03 a new program clxd was included with the CLX software. This perl script allows you to
connect directly to CLX via telnet (without first having to log in). This is achieved by putting the following
entry into /etc/inetd.conf:

clx stream tcp nowait root /usr/sbin/tcpd /usr/local/clx/bin/clxd clx
Also you must add to your /etc/services file something like this:

clx 41112/tcp # CLX Login

To make it really work, you must create an emtpy file called passwd in the directory ~/config:

$ touch “clx_us/config/passwd

This is all what you have to do. Now you must kick inetd to make it read its configuration file:

ps aux | grep inet
root 109 0.0 0.4 832 68 7 S 12:27 0:00 (inetd)
kill -1 109

Users can now log in via port 41112 with the command:
$ telnet <your hostname> 41112
This is what will happen:

Trying 192.0.0.2...
Connected to al7nj.
Escape character is [l R

Welcome at the clx gateway - you logged in from 192.0.0.1/1028.

Now you must enter your callsign. If you log in for the first time (i.e. ~/config/passwd contains nothing),
a new password will be asked for.

Enter new password:

Reenter password:

So a new entry is created in the passwd file. Otherwise you must enter the password which was used
previously.

Password:

The echo will not be suppressed so be careful when someone is watching you. T did not figure out how to do
this in a clean way. However, the program tries to make sure that a valid amateur callsign is being used for
login:

Your callsign: wrdfl
Callsign invalid.

Your callsign:

3. Description of the CLX Configuration Files 32

The passwd file contains four fields, separated by colons. Tt contains callsign, password (encrypted), the TP

address from where the connect was made and date/time of the first login.

dl6rai:wroX0dhQ.42t:192.0.0.2/1044:27-Feb-96 2023z
df2rg:wr9y/v96xsF9:192.0.0.1/1029:29-Feb-96 1640z

This is a very rudimentary security check and we do not recommended that you put this on the Internet

right away.

After successfully logging in, you will be treated like any other normal user. You can talk, you receive DX

spots etc. There is no difference between normal users and users coming in via telnet.

In fact, you can also use this feature to provide an incoming node connection. You would need some interface
to get over the login mechanism however. This could be done by a connect script described in section 3.15

(Connect Scripts).

As a special rule, clxd turns off the telnet echo when a known node callsign connects. This avoids problems

due to reflected PC10 frames (looping talk messages) and circulating mail.

3.14 Using CLX with TNOS

CLX can be used with TNOS. The following information was received from Joni Backlund, OH2NJR and
Andrea Fiorentino, NbKME/I10:

OH2NJR: “T just don’t see any reason to use TNOS with ax25 kernelcode anymore. With the latest ax25
kernel (2.0.30 with modulel3 and latest ax25 utils) I can do everything that TNOS does and save about

1.5MB of memory at the same time.”

The thing was done by attaching an ax25 kernelport to a pseudo ax25port on TNOS and then connecting the
real TNC into another port in TNOS. Then we only had to use the rxecho command with TNOS to copy
pakets from Linux’s TNOS port to the TNC-TNOS port and vice versa. This was the way T used TNOS
and Linux/CLX.”

| ax25 kernel port (CLX ax25 port) +--------—-——-—- + /dev/ttypf

pseudo serial

I
I
| connection
I
I

- +

| | TNOS port 1

| TNOS with 2 ports Ry + /dev/ptypf
| "rxecho" used |

| for kissbridge Fom - 0 THNC port

I I TNOS port 2

e +

It is done by using pseudo T'TYs as “wired serialports”. The kernel uses /dev/ttypf, TNOS uses /dev/ptypf
to connect the kernel and after that TNOS uses another port for the KISS TNC etc. Take a look at OH2RBJ’s
current setup at http://www.clinet.fi/ “njr/rbj.html

Here is some information frm 10/NSKME:

1. attach a pseudo kiss device with kissattach:

kissattach /dev/ptypf link

3. Description of the CLX Configuration Files 33

link is defined in /etc/ax25/axports as:

<port name> <call> <speed> <paclen> <window size> <description>
link NSKME-6 38400 255 7 clx <-> tnos

Note that the call must be the same as in CLX
2. configure clx for the correct device and speed in “/clx_us/config/clx_par:

tnc_dev: /dev/ptypf
tnc_baud: 38400

3. configure in TNOS the link with CLX in the file autoexec.nos add:
attach asy ptypf - ax25 clx 2048 1024 38400

4. Make the CLX port see everything a real radio port sees. My radio port for the PacketCluster link is

named uhf.
ifconfig clx rxecho uhf
ifconfig uhf rxecho clx

Note: Omnly one radio port can be rxechoed or the CLX link will see a tremendous confusion.

3.15 Connect Scripts

To make establishing node connections under CLX very flexible, we included a connect script feature as a
means to improve outgoing links to other nodes and sources of DX information. The concept is built around
a program (which may be written in any language) which establishes a connection to a remote node and
then, when the connection is established, switches into transparent mode. CLX uses pseudo TTYs as an

interface to the scripts.

We have found the Expect package from Don Libes (available on the Internet on any Sunsite mirror in the
directory /devel/lang/tcl) to be an ideal platform for such scripts as it already contains a great number
of pattern matching functions and through its interact command is able to keep the connection alive after

the script is done.

I downloaded the Expect package from fip://ftp.leo.org/pub/comp/os/linuz/sunsite/devel /lang/tcl/expect-
5.18bin.tgz. Nowadays, Expect is usually available as part of the Linux distrubition and normally installs

under /usr/bin.

Mike Sims, KA9KIM, who installed Slackware 3.5 in October 1998 reported that the version mentioned
above is kind of old. Presently, the expect package is located at the expect.nist.gov web site. However,
the newest version also needs Tcl version 7.4 which is also not included with that distribution so he had to

get the Tcl 7.4 sources too and then recompile the expect package.

The conditions for the external programs building up the connection are simple and straightforward: After
being called from CLX the program must either exit if the connection cannot be established, or the first line

of text coming back through is understood as a successful connect.

Let’s look at some examples which we have tested.

3. Description of the CLX Configuration Files 34

3.15.1 Shell Scripts as Connect Scripts

The first approach is a two-liner Bourne shell script. It uses the program call from the AX.25 utilities to
establish the connection to F6KNL-3. This example was worked out together with Lucien Serrano, FITE,
to connect to F6KNL-3 via F6KNL-9 and a Rose node. The script is very simple, it does not even require
Expect as there are just two commands:

#!/bin/sh
read $something
/usr/bin/call -r ax0 f6knl-3 f6knl-9 833501

This script is a plain shell script as you an see in the first line (the #!/bin/sh means to the shell: start the
program /bin/sh and then feed it with the rest of this script). The read command is necessary because
CLX will send the string “connect ax25 f£6knl-3” to the script after its start and this should simply be

dropped and not screw up the next program or the remote node.

However, in a more general script you could make use of this information. With CLX version 4.00, the script

receives command line parameters so now it is possible to provide you with a connect script for all occasions:

These parameters are taken from the command line
PROG=‘basename $0°¢

MYCALL=$1; shift

PORT=$1 ; shift

DIGILIST="$*"

Now we go process the 3rd parameter from STDIN

read conn

set -- $conn

logger -p localb.info "$PROG: /usr/sbin/ax25_call $PORT $MYCALL $3 $DIGILIST"
stty -echo raw

exec /usr/sbin/ax25_call $PORT $4 $3 $DIGILIST

The script is called with the outgoing callsign as the first parameter, followed by any additional parameters

in the conn_path: entry for that destination.

After the script has started, it receives a line from con_ctl specifying the destination call as the third and
optionally the outgoing callsign as the fourth parameter. So if the file */config/cluster_par contains these
lines

SECTION: dbObcc

conn_call: dlérai-7

then con_ctl will in fact send the string

connect ax25 dbObcc dlérai-7

to the connect script.
These scripts work well in reality and are pretty straightforward and simple to understand. They have some

disadvantages though:

e There 1s no internal timeout

e It will make CLX believe that the connection is established before it really is. CLX understands that
if anything is received from the script, the connection has been established and any watchdog timers

are started.

3. Description of the CLX Configuration Files 35

3.15.2 Using TCP/IP for a connect

A rather elegant usage of net_usr allows linking CLX nodes via TCP/IP. net_usr has the -h option to
allow specifying a CLX host. So net_usr -h al7nj dlérai-7 will start a connection to CLX running on

al7nj. So taking the same configuration as above, a simple script to connect another CLX node via TCP/IP

would look like this:

#!/bin/sh

read conn

set -- $conn
net_usr -h $3 $4

This assumes that the callsign you are connecting to (al7nj) is also a known IP hostname (by having it in

your /etc/hosts for example).

3.15.3 A simple Expect Script

Here is another example, a little more complicated as it involves several steps. As a first step it connects
DBOAAB and then tells DBOAARB to setup a link to DBOBCC. Finally the program goes into transparent
mode with the command “interact”. If either the first L2 or the L3 connect fail, the program aborts (“exit
1”7 in the code). In the first line again you can see that an interpreter is called, this time the program
/usr/bin/expect with the flag “-£”.

#!/usr/bin/expect -f

#

Routing through Kernel AX.25

#

#om e User configurable --------ommommmoo

set digi dbOaab

set port kiss

set destination dbObcc
set 12_timeout 10

set 13_timeout 30

set timeout 0

log_user 0
set timeout $12_timeout

spawn /usr/bin/call -r $port $digi
expect "***Connected"

expect timeout {
send_user "\n### timed out waiting for ’=>’\n"
exit 1

} n=xn

send '"c $destination\n"

set timeout $13_timeout
expect timeout {

send_user "\n### timed out waiting for ’*** connected to’\n"

3. Description of the CLX Configuration Files 36

exit 1

} "x%% connected to"

send_user "*** connected to $destination\n"

interact

Of course, the parameters in this file can be left out as you can specify them in the configuration file. Let’s

look at another more complicated script.

3.15.4 A more sophisticated Script

Here we dial up an Internet connection through cu, login, telnet across the Internet and login at the remote
clxd port. We have not tested this script, so it may or may not run. But we hope you get the idea behind
it.

#!/usr/bin/expect -f

#

#* Routing through cu, telnet
#

set timeout 60

log_user 0

Use cu to dial up my Internet Service Provider

spawn /usr/bin/cu isp

expect timeout {
send_user "\n### timed out waiting for ’Connected.’\n"
exit 1

} "Connected."

Unix Login

send "\n\n"

expect timeout {
exit 1

} "ogin:"

send "name\n"

expect timeout {
exit 1

} "sword:"

Wait for shell prompt
send "MyPaSsWoRd\n"
expect timeout {

exit 1

} l|\$l|

Now telnet to my partner’s clxd port
send "telnet 193.0.23.245 41112\n"
expect timeout {

exit 1

} "Your callsign: "

Login at the remote clxd

send "xx0xx\n"

3. Description of the CLX Configuration Files 37

expect timeout {
exit 1
} "Password:"
send "my_login_passwd\n"
expect timeout {
exit 1

} "x%% connected to clx"

DK, we’re done

send_user "*** connected to $destination\n"

Transparent mode

interact

3.15.5 A virtual one-way connection

As a last example, think of a program which does nothing else but listen to an AX.25 channel where Pack-
etCluster spots are being transmitted. On a busy channel, some DXers are always maintaining a connection
to some PacketCluster system. Or you could have a listen on 14.096 MHz where some PacketCluster activity
is going on. Just imagine such a program as an interface to CLX. From within CLX you would simply

configure this as a “virtual” connection to another node.

The program /usr/bin/listen from the AX.25 utils package allows us to listen to the different ax25 ports.
With the “-r” option it outputs the monitored frames in a readable form which can then be scanned for any
DX spots. Here is the script:

#!/usr/bin/expect -f

#

Listening on my radio port for spots
#

log_user 0

set timeout -1
spawn /usr/bin/listen -r

while (1) {
expect -re "\["\n]*DX de .*\[~\n\r]" {

send_user "$expect_out (0,string) \n"

This simply starts the program /usr/bin/listen and goes into filter mode. The complicated looking
expression

\[*\n]*DX de .*\["\n\r]

is nothing else but a definition for a DX spot in expect’s regular expression form.

For more information about expect, I recommend reading the book “Exploring Expect” from Don Libes,
O’Reilly & Associates, Inc., ISBN 1-56592-090-2 available at any good computer book store.

Think of other ideas like this:

3. Description of the CLX Configuration Files

38

e use a packet program and write all DX spots into a file. Then use tail -f to read from this file. We

have included a script called file_monitor in the ~/exec/connect directory.
e use TNT’s :logmon command to log anything to a pty as follows:
:logmon /dev/ptyqf

Secondly use a script containing

cat < /dev/ttyqf

so it will read anything which comes in from the monitor.

3.16 CLX and Callbook Data

Several interesting address sources are available on CDROM as well as on-line on the internet. Buckmaster

Publishing was first to provide access for the Pavillion software to their address database. CLX does support

the QRZ! Hamradio CDROM, the International (Flying Horse) Callbook CDROM and also a free data

format into which you can configure your data.

3.16.1 The QRZ! Hamradio CDROM and other callbook data

From version 2.00 CLX allows you to use any callbook data available on your system. This feature enables

you to directly access the QRZ! Hamradio CDROM from Walnut Creek (AA7BQ) and also your own data

files if they are supplied in one of two data formats.

A new directory ~/callb must be created. This directory may contain any further subdirectories with

callbook data. The data in this directory must comply with one of these formats:

1. Sorted by suffix:

AAOA
ABOA
ACOA
ADOA
AA1A
AB1A
AAOAA
ABOAA
ACOAA
K OAA
K 1AA
K 2AA

2. Sorted alpha-numerically:

AAOA
AAOB
AAOC
AAOD

,Name. ..
,Name. ..
,Name. ..

,Name. ..

,Name. ..

,Name. ..

,Name. ..
,Name. ..

,Name. ..

,Name. ..
,Name. ..

,Name. ..

,Name. ..
,Name. ..
,Name. ..

,Name. ..

3. Description of the CLX Configuration Files 39

AA1A ,Name...,,,,
AAIB ,Name...,,,,
AAIC ,Name...,,,,
AAOAA ,Name...,,,,
AAOAB ,Name...,,,,
AAOAC ,Name...,,,,

Missing characters are replaced by blanks. Fields are separated by commas. The sort type is indicated by

file name.
<name>.s sorted by suffix
<name>.c sorted alpha-numerically

No other formats are available at this time. More to be done in the future.

Any available sources are supplied in the clx_par file. With the callb parameter you may specify any
number of directories to search for callbook address information. The software searches each directory until
the requested address is found. Then it stops. This way you may have directories with descending priority,
for example a local directory where you put in very reliable information and as a second source the CDROM
information. Tf the information is found in the local directory, the (probably wrong) information on the
CDROM is not shown to the user.

There may be any number of files in the ~/callb/# subdirectories. The information must be mutually
exclusive, i.e. you cannot have two files with Italian addresses in the same directory. This must either be in

a single file or in two different directories.

CLX creates two index files in each subdirectory, one for the suffix oriented files and another for the alpha-
numerically sorted files. These index files are being created when starting CLX. The indexing runs in the

background so it might take a few minutes before you can access the data after the first start.

Whenever information is changed in these directories, CLX will realize that something has changed and
rebuild the index files. The index files are named clx_idx.s and clx_idx.c. Their size is approx. 200 kB
each.

The files may not be in that directory physically. It is OK to make symbolic links to the physical files, thus
allowing you to keep your CDROM mounted under /cdrom or whatever.

Example:
You have two directories under callb:

local

qrz_dx

local contains any local addresses, probably gained and converted from a club’s roster, your private address
database or something. So there is only a single file in local, named address.c. This file must be sorted

alpha-numerically.

The grz_dx directory contains a link to the QRZ! Hamradio CDROM mounted under /cdrom:
all.s -> /cdrom/callbk/callbkc.dat
You can even keep the files on a different machine and mount them via NFS. We have put a sample file

under ~/callb/local which is named bcc.c. It contains some entries from the BCC’s club roster. This file
will be used by CLX if you specify the directory

4. CLX Programs, directories and database tables 40

callb: 1local

in the clx_par file.

The user command to access the information is show/callbook. This is an internal command and it cannot
be changed. The show/address command which was used here before is now free for your own database,

probably importing from a PacketCluster .ful file (see also 5.9.3 (read-akla)).

3.16.2 The Flying Horse CDROM Callbook

The data on the Flying Horse CDROM Callbook is provided through the use of a DOS program
named calldos.exe. This program and a little Expect script is used to gather the data from the
CDROM. To get this working, you must first get the DOS emulator going, preferrably by read-
ing the supplied documentation and the DOSEMU-HOWTO document, available, for instance, from
http://sunsite.unc.edu/mdw/HOWTO/DOSEMU-HOWTO.html.

You must be able to start the DOS Emulator and access the Callbook data from a drive letter. This drive
letter must be defined in the CLX configuration file c1x_par. Additionally, no printer must be defined in
DOSEMU, as the program supports only LPT1: and we need to send its data to a file.

If all is working well, you could try running the program first from the clx_us shell prompt:

$ ~/exec/command/show/cba dlérai dk2oy

and you should get:

Manfred Petersen, DK20Y
Hardtstr. 83
D-40629 Duesseldorf

Germany

The user command to access the Flying Horse callbook data is SHOW/CBA.

3.16.3 Using online address data from the Internet

Thanks for Matthew George and Erik Olson there another script is provided in the ~/exec/command/show
directory allowing online access to Internet address data directly from www.qrz.com. You must have a
continous Internet connection. The script is provided “as is”, T have not tried it here but it is used in a
production mode at NCT7J. The script is named cba.internet and to make it easy for your users, you

should rename cba to cba.cdrom and cba.internet to cba.

4 CLX Programs, directories and database tables

4.1 Files and Directories of CLX

CLX uses a specific file structure under its home directory ~clx_us:

ax25/ some binaries and AX.25 .tgz files
backup/ where tools/bup_db writes and reads ASCII backups
bin/ CLX binaries and clx startup/shutdown script

box/batch/start/ user startup files (profiles)

4. CLX Programs, directories and database tables 41

box/iclb/ mail to be forwarded

box/mail/ user mail directory

box/bulletin/ DX bulletin directory

callb/ callbook files, links to QRZ-DX CDROM
exec/command/ command extensions for all users
exec/connect/ connect scripts for CLX

exec/interpr/ command extensions for all, with message interpreter
exec/privileg/ command extensions for admin users
exec/checks/ directory for mail checking

config/ configuration files

db/ command files to create database tables
box/info/help -> Link to default language help files

box/info/help.german/ German user help files
box/info/help.english/ English user help files
box/info/help.french/ French user help files (tnx HB9BZA)
box/info/help.italian/ Italian user help files (tnx IK3HUK)

box/info/help.portuguese/ Portuguese user help files (tnx PP5AQ)
log/ directory for log files (specify in /etc/syslog.conf)
tools/ system and user administration tools

4.2 Programs

The CLX software consists of several programs which are linked via shared memories and database entries.

The server software is being started and shutdown by the clx script, which starts and stops the processes.

4.2.1 Server programs

Here 1s a definition for each particular module

con_ctl

is the communication interface (AX.25, telnet sockets)
rev_ctl

manages receive spooling.

snd_ctl
manages transmit spooling. At a later time, this process may handle priorities. Currently all messages
are in one single processing queue.

rm_disp
receive message dispatcher, forwards messages to other processes.

usr_req

manages all user commands, user database requests, forks a process for every database task to make
it run in the background. The background process later sends the results directly to send ctl.

mb _ctl
mailbox control. The mailbox keeps messages in a file system, header information is stored in the
database.

usr ctl

user administration (logins, logouts, logbook).

4. CLX Programs, directories and database tables 42

usc mng
manages external user commands and command extensions.
usr dlg

manages user dialogs like the set/priv sequence.

bbs__if
Packet Radio Bulletin Board System (PBBS) interface implementing the WORLI mail forwarding
protocol.

iu__com

inter user communication (talk, conference).

icl com

inter node communication (processing and generating PCxx messages).

clx_ctl

system administration, installing shared memory pages. It also controls cyclic jobs like building up
link connections, testing with ping etc.

int com

manages internal program communications.

udt _mng

manages private data tables (udt’s).

db *

special program started for special access to database. This program will be terminated when the

transaction is finished.

clb_sad

Manages the index files in the callbook directory ~/callb. This program will be started at the start of
CLX and then finishes, after the update of these files. When a user accesses the callbook, this program

handles the interaction between user and callbook data.

bbs_if

a program which is started up for each incoming PBBS connection. PBBS systems are identified using

the bbs_lst configuration command in clx_par. See 3.2 (bbs_Ist) for further details.

4.2.2 User Programs

The following programs may be run from the console:

net usr

A login program for clx from the console or when started via ax25d. net_usr is a statically linked

program (except that it needs libc.so.5). Tt can be run from another computer and does not need any

of the specific CL.X shared libraries.

net_usr has a number of command line switches, enabling different features:

4. CLX Programs, directories and database tables 43

-h <host> connect to CLX on a different host

-i necessary for batch programming. Makes net_usr read from STDIN
only when the connection to the running CLX is established.
This should make it possible to run net_usr from a shell

script reading commands from a file (like this):.

net_usr -i dl6érai <<NNNN
sh/dx/10

bye

NNNN

Unfortunately, due to CLX’s multiple processes, the second
command goes through faster and so the output of the first
command never gets out. We have not found a solution to this
problem at the moment but it did not seem very important
anyway. The general problem is that CLX does not serialize

the commands but tries to work them down as soon as possible.

-r similar to the -i option above with the difference that the
program only terminates after having received a response from

CLX. It is working for an announce command like this:
echo "ann DBOBCC will be shut down now" | net_usr -r

-X Makes net_usr convert all <CR> characters to <LF> on input.

This is necessary for net_usr to run correctly under ax25d.

-m MS mode: Makes net_usr convert all <LF> to <CR><LF> on output.
This is necessary to make telnet access under MS-Windows look

nice.

term usr

Another login program with readline support, basically providing the same functionality as net_usr but

with GNU readline support. term_usr supports exactly the same command line options as net__usr.

Press “ctrl-P”/“ctr]-N” for previous/next commands, goto begin or end of line with “ctrl-A”/*“ctrl-E”
and move the cursor back and forth with “ctrl-B”/“ctr]l-F”. The standard cursor control keys may also

be used.

Vi fans may also permanently switch to Vi mode by creating a file /. inputrc containing the line:

set editing-mode vi

Then command history and recall are available with the standard Vi functions like <ESC>-k, <ESC>-j,

etc.

term_usr supports a number of so-called inline commands for uploading or downloading of files. This
way it is easy to start writing to a log file to document a CLX bug or you may use it for uploading

files and data to the CLX system. Commands currently supported are:

P print working directory

"1 list current directory

“c <path> change working directory to <path>
> <file> upload <file>

"< <file> download to <file> (appends, never overwrites)

4. CLX Programs, directories and database tables 44

finish download

~? shows a short command description
When logging to a file, all input lines are logged with leading >>’s.

clx _adm

Administration tool which is being described in section 5.14 (Administration Tools) further below.

4.3 Database tables

CLX runs uses a number of tables in the Postgres database. The tables are accessed through the CLX
programs so the user normally doesn’t even know that there are databases, tables, index etc. For the Sysop
however, it may be interesting to know that there are in fact a number of tables which are read from and

written to by several CLX programs.

Table Content write read
access access
ann_data Announce icl_com db_san
ar_band Band Boundaries <setup> usr_req
distr_1i Distribution Lists ? ?
dx_data DX-Data icl_com db_sdx
dxcc_pfx DXCC Prefix List clx_ctl usr_req
dxcc_dat DXCC Countries List clx_ctl usr_req
ml_dir Mailbox Directory mb_ctl mb_ctl
ml_file Mailbox Files mb_ctl mb_ctl
gsl_mng QSL Information usr_req db_sgsl
sys_dat System Information clx_ctl clx_ctl
us_data User Data usr_ctl usr_ctl
us_log Logbook usr_ctl db_slog
us_uhn Homenode Table icl_com,usr_ctl usr_req
wwv_data WWV Propagation Data icl_com db_swwv

The QSL database is currently empty. read_akla, a tool to import QSL information from PacketCluster
files is in the ~/tools directory. Look at section 5.9.3 (read_ak]a) to find out more about this tool.

You can import a full-blown PacketCluster QSI.-Database, like the one available from DBOSDX/DL1SBF
which is available on the Internet, currently at ftp://ftp.grossmann.com/pub/db. This database is maintained
by DL1SBF, who has been working on the data for several years - probably a good start for you.

The VHF Group DIL-West has produced a fine database of VHF station information for central European
VHF /UHF enthusiasts. Several interesting information from active callsigns are registered there like QTH
locator, Packet and E-Mail address, Name, type of activity etc. This database can also be imported using
the read_akia utility. See 5.9.3 (read _akla) for an exact description of the details. The command to read
in the database goes like this:

$ read_akla -c -t vhf vhf_150.dbf

The database is available directly from Guido, please mail him at di8ebw@qsl.net.

DL3KDYV has taken the TOTA list and made it available for use with CLX. The read_akila utility can
also import this type of data, automatically creating a table which shows entries by TOTA designators (like
EU-001), Prefixes (like G) and continents (like EU).

4. CLX Programs, directories and database tables 45

The DXCC table is read from the file “/config/cty.dat. This file is a standard list of DXCC and WAE
countries very popular and kept up to date world wide by CT (copyright KIEA) users. A recent version is
always available from http://www.contesting.com/ct/files/#cty. Whenever this file changes, clx_ctl, which
is the first program started when launching CLX, will reread the table in the background.

The home node table of CLX remembers user’s home nodes and sends mail messages that way. The user may
either explicitly select a home node location. If he does, the information is saved permanently, regardless of
logins at other places. If no home node information is entered by the user, the system takes the first login it
gets to know about this user, as his home node. If the user later connects to another node, CLX waits until
it has received this information five times consecutively, before it does to change the home node information

accordingly.

Some of the tables have indexes:

Table Index file(s)
ann_data idx_and

distr_1i idx_dli

dx_data idx_dxc, idx_dx1, idx_dxf, idx_dxd
ml_dir idx_mdd, idx_mdn
ml_file idx_mfn, idx_mfd
gqsl_mng idx_gsl, idx_mng
us_data idx_usd, idx_uld
us_log idx_usl, idx_ulc
us_uhn idx_uhn
wwv_data idx_wwd

All files of the CLLX database are stored in the directory $PGDATA/base/clx_db.

It may be of interest to you that the hardest part for the database is retrieving “the last n” spots from the
dx_data table. The reason behind this is that a query is built step by step. So when you query the last 5
records from the dx_data table, the following happens:

e Postgres would select all records, convert them to ASCII and write them into an intermediate file.

e then CLX would filter out the last five
The same is true for the last 5 records of 20 meters:

e Postgres would select all 20 m records, convert them to ASCII and write them into an intermediate

file

e then CLX would filter out the last five

The more specific the query is, the less overhead. So when you look up the last KL7 station on 40 meters
RTTY this job will be handled very quickly and efficiently. This is a general problem and has nothing to do
with Postgres but with the use of a database in this way.

To get around this problem, we have taken two approaches:

e The last 100 spots are always kept in memory. This is where your “sh/dx/5” command is taken from

and this explains why it is so much faster than “sh/dx 2”. fed from.

4. CLX Programs, directories and database tables 46

e When querying the dx_data table, we first try to find a result in a small time interval going back from
“now”. If this fails the interval is made longer and longer until the query really looks through all data.

Currently we have implemented 6 different intervals:

2 days back

8 days back
31 days back
125 days back
500 days back
all

When the query gets into the third level (31 days) it writes a message to the user saying “Patience. This
query needs time” (message #205 in adv_txt).

4.3.1 User defined database tables (UDTs)

With version 2.04 and later of CLX, it is now possible to install your own database tables in the Postgres
database. For this, a conversion program called read_ak1a is provided in the ~“/tools directory and a set

of CLX commands for the installation and administration of these tables exists (see 5.10.3 (udtadmin)).

4.3.2 Administration commands

This is the command set for administering the UDTs:

4.3.3 Remote database access

As a very esoteric feature, a database may be defined as follows:

create/!udt <tablename>/<flags> <clx command>

The “I"-character denotes that the record is not being looked up but a CLLX command is called when the
database 1s being accessed. This way, CLX can make its database tables accessible to other nodes. They
can access the database table through a PC44 (remote database request).

Also, this provides a way to make an alias for a database table.

Let’s say, you with to export your QSL database to another node (be it CLX or Pavillion PacketCluster).
create/!'udt clx_gsl/+- sh/gsl <7>

This command creates a new table called c1x_gsl which turns any request into the clx command sh/qsl.
Note that the argument to the command is passed in the <?>. This must be specified, otherwise sh/qsl
would be called without an argument.

Not only can you make an executable table but also records in your table may contain executable statements.
This allows you to collect different programs and utilities under a common command interface. The syntax

here is similar:

update/<tablename> !<key> <clx command> <7>

The <?> argument is optional and if stated will contain the command line parameter.

4. CLX Programs, directories and database tables 47

4.4 Files under the ~/box directory

The ~/box directory contains a number of subdirectories where the part of the user data is kept, which is
not stored in the Postgres database. These are mail messages, mails in the forwardig queue, user startup
files, DX bulletins and the user help files. This portion of the file system is administered internally and you
should use the Unix commands only in special cases where you know what you are doing. Generally, each
file in this hierarchy also has a corresponding database entry and it’s always a bad idea to get the two out of
sync by manually fiddling around here. CLX provides a command interface to this area with the privileged
CLX commands PUT, GET, LS and RM commands.

The consistency of the “/box directory hierachy is checked with the script mbx_chk (see 5.9.3 (mbx_chk)),

normally at CLX startup. However, can also be called from the commandline.

4.4.1 The batch subdirectory

This directory contains another subdirectory called start. Below this, files are stored named after users’
callsigns containing the startup procedure they have defined using the CLLX command UPDATE/PROFILE.

4.4.2 The bulletin subdirectory

This directory contains a subdirectory for every year. These are generated automatically when an upload
ocurs in a new year or if a user explicitly specifies the year with the UPLOAD command. The files are then

stored one level below. There is no strict convention on how users may name the uploaded bulletin files.

The bulletin subdirectory is never changed by mbx_chk - but mbx_chk picks up any new files in this directory
and includes them in the database. Knowing this, you may add bulletin files at the shell prompt to these
directories by directly copying them into place and then running mbx_chk.

4.4.3 The iclb subdirectory

The iclb directory contains subdirectories for every partner node it forwards mail to. Under these directories

deleted after sucessful completion. The destination address and other message-relevant information is kept
in the database.

Files in this directory are checked both ways by mbx_chk. Whenever the file or the database entry is missing,
the corresponding part will be deleted. With the command rm_fwd you may remove mail forwarding queues

directed to specific nodes. For more information on this command, see section 5.9.3 (rm_fwd).

4.4.4 The info subdirectory

The info subdirectory contains both a place for the help files (different languages) and for changible system
files (like the motd file) in ~/box/info/etc.

mbx_chk does not check this directory at all.

User help files are to be found under ~/box/info. The old place “/doc/user is now used for the CLX user
manual which was compiled by Tan, GOVGS, with a lot of effort. There is a printable version and also a

HTML version of the user manual available.
The file structure in that directory is as follows:

The directory help should always be a symbolic link to the English version of the on line help files. These
are the most current files.

5. System Administration Tasks 48

Secondly, a link should be made from the language used in your country to help.default. You should see
that the help files in that directory are well up to date with respect to the English versions too. Additionally,
there are a number of language directories like French, Italian, German and Portuguese. Leave them in

place, if a user choses to switch languages, these directories will be used.

If you put some work into the help files, please be sure to mail us a copy to include in a future distribution
of CLX. If you are translating the help files, please be sure to take a look at section 3.6 (special characters).

4.4.5 The mail subdirectory

The mail directory contains subdirectories for every user and for standard bulletin addresses. These subdi-
rectories then contain files numbered from 1 to 9999 which are the true message files without and additional

information (no headers). That information is only kept in the database.

Files in this directory are checked both ways by mbx_chk. Whenever the file or the database entry is missing,
the corresponding part will be deleted.

5 System Administration Tasks

5.1 Time

CLX needs time in UTC. If you run CLX on the air, you should get this correct. Otherwise, your node will
send out DX spots with wrong times. Look for information regarding local time settings in a file sometimes

called /usr/lib/zoneinfo/time.doc.

Generally, your CMOS clock should run on UTC, also your system clock should be on UTC. If your machine
runs completely on UTC, you need not change anything. However, if you like to have clocks display local

time on your computer, you must read on.

First, in the /usr/1ib/zoneinfo you should make a link from your local timezone to localtime. Addition-

ally, you must make a link to posixrules, as this is needed to interpret the TZ environment variable.

Second, in both clx_us’s and postgres’s “/.profile you should set the TZ variable as follows:

TZ=GMT
export TZ

To change the CMOS clock from within Linux, you must use the command /sbin/clock -u. At boot time,
to set the system clock from the CMOS clock, you should put /sbin/clock -au in your start files.

Also you should see that your computer’ clock is not lagging or leading in time. There is a nice trick of keeping
your clock accurate without the need for an external time base. This is done by first measuring the deviation
over a certain period (say one week) and then specifying this deviation in the file /etc/adjtime. After that,
the command /sbin/clock -au will automatically correct the hardware clock at regular intervals. The more
exact the deviation is known, the better. Look into the man page for /sbin/clock (try man 8 clock) for

exact details.

5.2 Log files and Syslogd

CLX makes extensive use of the syslog facility. This requires syslogd to run. You may redirect CLX’s
output to different log files. This is done in the /etc/syslog. conf file. There are several levels of logging
output. Here is part of DBOCLX’s /etc/syslog.conf file. The debug option generates lots of output,
beware! Also with lots of traffic, the debug option generates so much traffic that the system may lock up.

5. System Administration Tasks

49

This is something we have observed at DBOBCC some time ago. When we discontinued the debug log, all

was OK again.

locall,local2,local3,local4,localb.err
locall,local2,local3,local4,localb.crit
locall,local2,local3,local4,local5.info
locall,local2,local3,local4,local5.debug

-/usr/local/clx/log/err.log
-/usr/local/clx/log/crit.log
-/usr/local/clx/log/io.log
-/usr/local/clx/log/debug.log

There is an important detail when specifying the file name: Normally, the syslogd syncs the file system

(fsync) with every single message. This produces a very high system load especially when a lot of log messages

ocur. With “” in front of the filename, no fsyncs are triggered and the default Unix behaviour is used. This

information is described in the syslog.conf manual page (try man 5 syslog.conf). We recommend to use

“7 otherwise your system may become very slow.

When you make changes to /etc/syslog.conf, you will have to restart syslogd with kill -1 to make it

read the new version of the file. You can deactivate entries in the config file by putting a “#” in front of the

commands.

Carl Makin, VK1KCM, writes that he feeds all log output into a single file with the following configuration:

locall,local?2,local3,local4,local5.* /usr/local/clx/log/all.log

5.3 Keeping track of CLX’s Status

The CLX startup and shutdown script “/bin/clx also allows to check CLX’s running status, i.e. if all is

well. For this, you must call ¢1x with the “-¢” option.

$ clx -c

Checking clx processes...

Shared Memory manager clx_ctl:
Internal Communications Manager int_com:
Transmit Spooler snd_ctl:
User Administration usr_ctl:
Inter-User communication iu_com:
Inter-Node communication icl_com:
User Database Interface usr_req:
User Data Table Manager udt_mng:
Mailbox Controller mb_ctl:
User Commands Manager usc_mng:
User Dialog manager usr_dlg:
BBS interface bbs_if:
Received messages Dispatcher rm_disp:
Received messages Spooler rcv_ctl:
AX.25 interface con_ctl:
$

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

Normally, all processes should return OK as their status.

shutdown CLX and restart.

= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K
= 0K

If one of the processes is missing, you should

If this happens often, there maybe a problem with CLX, with the database or else. Please read the bugs

chapter for known problems and errors.

Also clx’s return status can be used to determine a problem. CLX’s own watchdog feature uses an internal

function to check its status. For more information see 5.6 (CLX Watchdog).

5. System Administration Tasks 50

5.4 Automatically starting CLX

For automatic startup you should make a link from /sbin/init.d/rc3.d to
/usr/local/clx/tools/startup. This will then run the appropriate startup script when Unix is
starting up.

cd /sbin/init.d/rc3.d
1n -s “clx_us/tools/startup S99clx

The startup file will remove any lock files and then start up CLX.

5.5 Shutting down CLX

Contrary to the original DOS-based Pavillion software, CLX does not need to be restarted at regular intervals
due to memory leakage etc. Of course there may also be bugs in the software and memory leaks, but the

impact is not so dramatic and so, in general, CLX can run for a long period without a restart.

If you still decide to shut down CLX regularly or even reboot your computer, you could use the following

lines for root’s crontab entry:

crontab -1

1 0 *# * * /usr/local/bin/adjtime

0 2 * x x /usr/local/clx/tools/clean_log
30 2 * *x * /usr/local/clx/bin/clx -s

35 2 % % % /sbin/init.d/postgres stop

45 2 x x* % /sbin/reboot

Read this as follows:

e CMOS clock is adjusted at 00:01 every day.
e At 02:00 the log files are cleaned up.

e At 02:30 CLX shuts down

e At 02:35 Postgres shuts down

e after a grace period of 10 minutes, the computer will be rebooted.

5.6 The CLX watchdog

As CLX may be instable or flakey at times, you may wish to control its status at regular times. With release
3.03, a watchdog concept was implemented into the core CLX software in that all the processes update a time
stamp in the shared memory area once every sixty seconds. If all processes have timestamped that memory
location, a file named clx_stat in the “/log directory is being updated. A script called clx_watchdog is
called by crontab every 10 minutes and checks the status of this file. If the file has changed in the last five

minutes all is left alone. However, if it hasn’t, c1x_watchdog shuts down CLX and restarts it.

To use the watchdog utility, put a line like this into your root’s crontab file:

0,10,20,30,40,50 * * * x /usr/local/clx/tools/clx_watchdog

5. System Administration Tasks 51

The watchdog script has undergone several changes and enhancements in the past. There is now a feature
to turn off or turn back on the watchdog from the shell prompt and from inside the CLX program (as a

privileged user only). The commands to control this are:

| Shell as clx_us | From within CLX (sysop mode)
Turn on | clx_watchdog on | enable/watchdog
Turn off | clx_watchdog off | disable/watchdog

I

Show status clx_watchdog show | show/watchdog

This feature comes in handy when updating the CLX software or doing other time-consuming jobs when
watchdog could interfere and shut down CLX when it was not really necessary.

5.7 Kernel Panic

A hint regarding this rare kernel feature. This portion is an excerpt from the Linux BootPrompt-HOWTO:

In the unlikely event of a kernel panic (i.e. an intermal error that
has been detected by the kernel, and which the kernel decides is
serious enough to moan loudly and then halt everything), the default
behaviour is to just sit there until someone comes along and notices
the panic message on the screen and reboots the machine. However if a
machine is running unattended in an isolated location it may be
desirable for it to automatically reset itself so that the machine
comes back on line. For example, using ‘panic=30’ at boot would cause
the kernel to try and reboot itself 30 seconds after the kernel panic
happened. A value of zero gives the default behaviour, which is to

wait forever.

Note that this timeout value can also be read and set via the

/proc/sys/kernel/panic sysctl interface.

5.8 Other regular Tasks

There are some other things which should be started regularly. For this, we have added sample file
crontab.clx_us file in the “/config directory which looks like this:

At 00:02 UTC every day, create a new MOTD file

---> This one must be adapted to your local needs
---> 2 0 * % * /usr/local/clx/tools/mk_motd

At 00:11 UTC every day start database maintenance
11 0 * * % /usr/local/clx/tools/db_maint batch

This file can be activated with the following command:
$ crontab "/config/crontab.clx_us

Whenever you make changes to this file, you must re-read it with the crontab command or you may directly

edit the crontab entry with crontab -e.

5. System Administration Tasks 52

5.9 The " /tools directory

There are several scripts in the “/tools directory which may be used by the system administrator.

5.9.1 Database administration

bup_db backup or restore all CLX databases.

When called with “-s” the utility will make an ASCII backup of all CLX database tables to the directory
~/backup plus tar all files in the ~/box directory, which represent any mail and bulletin files. With “-r”
this program will read back the ASCII data into an empty, newly created database and unpack the tar file.
bup_db will also back up user defined tables and additionally send a warning message if the formats of the

old and new tables don’t match. The strategy is as follows:

When backing up, bup_db saves any CLX table which is found in Postgres table pg_class except ar_data and
sys_dat as these may change in a future version of CLX. When restoring data, bup_db restores everything
from the ~/backup directory except files ending in *.tmpl. This way it is possible to also restore user defined
tables.

clx_db destroy and create CLX Postgres tables

clx_idx create indexes for the CLX Postgres tables

These programs are used to either restart the database in case it has become corrupt or for other reasons.

You should not use them in a normal situation.

The db_maint program is used for many routine maintenance jobs. It can be called from within CLX (as
a privileged user), from the command line or via cron in batch mode. For example, to cleanup the DX
database, purge the user log, delete old user records from the database, delete old mail messages and finally

run vacuum you could use the following crontab entry:

at 03:08 every day, cleanup CLX database and run vacuum
8 3 * * x /usr/local/clx/tools/db_maint batch

For more details on how to use this program, see 5.10.4 (db_maint).

5.9.2 CLX Maintenance, Startup and Shutdown

startup startup CLX with correct environment (.profile)

clean_log compress yesterday’s logs and start a new log today

clx_watchdog check if all CLX processes are still alive and if
not, shutdown and reboot

mk_motd generate a new '"Message of the Day"

You may have read about these programs before.

5.9.3 Other programs

check checking your installation.

mk_th create some directories for mailbox (used within the clx script)
log_monitor display excerpts from the syslog

us_adm user administration tool (modify permission flags)

shmd display shared memory contents

[

System Administration Tasks 53

mbx_chk a tool to check the consistency of entities under ~/box
rm_fwd a script for cleaning up mail forwarding queues

check_adv_txt a utility to help you translate the <tt/adv_txt/ file
read_akla a program to import PacketCluster WWV/DX/OPERNAM/QSL/FUL files

filesend program to send a file as a CLX mail message

A few more details about these tools:

us__adm
see section 6.3 (User Commands) for more details.

mbx_chk
A tool was created to keep CLX’s database of files in sync with the entries under ~/box. mbx_chk
checks if all files have corresponding entries in the m1_file table and if all entries in the table have
corresponding files under ~/box. The remaining files/entries will be deleted. Also files with a negative
size in the database (this is when the files are listed with “#” as the size symbol) will be deleted. When
do negative file sizes ocur? This is when CLX is shut down during message forwarding.
mbx_chk may be run at any time, with CLX up or down.

rm_fwd
This script is useful when you wish to clean up your mail forwarding queue to a specific node. Let’s
say, node yyOyy has ceased to exist but there is still a bunch of mail to be forwarded to him in your
iclb directory. To remove these mails (which can never be sucessfully forwarded anyway), use the
command rm_fwd yyOyy. You may also use this command from within the db_maint utility.

shmd

A utililty to dump shared memory contents. This program is mainly for debugging purposes so that

we can ask you to mail us a shared memory dump in case you are observing a strange error.

log_monitor

A little program to follow the log messages which are kind of hard to read. This script can filter out

specific callsigns. Use log_monitor -h to find out its options. Basically they are:

-f to focus on a specific callsign. Only messages to and

from that call are being shown.
-x to exclude messages to or from a specific callsign.

-W to adjust screen width of the messages. Your screen looks
bad when the messages shown are wrapping around the right
end of the terminal and continue on the next. To change this,
you can limit the number of characters shown to let’s say

80 and so any longer lines will be truncated.

-8 Starting time. The time must be given in a format like
¢¢Jul 19 08:20:30°°. This is for off-line monitoring of
old log files. See decription below.

Here 1s a sample session to show you what’s possible:

$ log_monitor -f dl6rai
CLX log monitor v1.0 -- Focus: "dl6rai"
dl6rai->: Connect.

5. System Administration Tasks 54

dl6rai->: *** connected to dlérai
dlérai<-: Hi Ben, here is '"clx"! Experimental cluster-software on linux.
dl6rai<-: clx >

dlérai->:

dl6érai->:

dl6rai<-: clx >

dl6érai->: sh/us

dl6rai->:

dl6rai<-: User:

dl6rai<-: dlérai

dl6rai<-: clx >

dlérai->: sh/dx/2 1

dl6érai->:
dlérai<-: 1835.7 TIACF 6-0ct-1996 06417 <d18ui>
dlérai<-: 1842.9 D44BC 6-0ct-1996 05287 <dliyd>

dlérai<-: clx >
dlérai->: bye
dlérai->:
dl6érai<-: Bye...

dl6rai<-: Disconnect.

This tool may also be called via the privileged command monitor when you are logged in as a CL.X

admin or superuser. You just specify the callsign to be monitored on the command line:
monitor dlérai

Using command £ you can direct the focus to another callsign, and with q you can leave the monitor.
By default, the window size shown is limited to 65 characters to make it look nice on a 80x24 terminal.
This parameter can be changed with the w command from inside the monitor.

When specifying a file name, you can trace an existing log file (off-line monitoring). The log file will
then be traced from the begining unless you specify a starting time using the “-s”option. This allows

3

you to watch a specific situation to find problems or misbehaviours. When “-s” was specified, the log

is printed in quasi-realtime, and the time given in square brackets shows when the net log entry is to
be expected. Try this out if it interests you and you will quickly understand what’s going on.

check adv_txt
a tool to check translated adv_txt files for completeness and generally helping you with translation.
Please refer to section 3.4 (check adv_txt) for further details.

read _akla

This utility is provided to import data from the original PacketCluster files DX.DAT, OPERNAM.DAT and
WWV.DAT and QSL information from a PacketCluster . ful file. Additionally, DLSEBW’s VHF database
can be read using the VHF type.

The program has several flags and options:
-f Output to a file named "postgres.input'". Normally

read_akla directly connects to the postmaster and

feeds the data into the table.

-v Be verbose
-p Generate PSQL statements instead of "COPY from"
-c Create a new table. Normally, read_akla appends data

to an existing table.
-t <type> Here you must specify the type of data you are
reading in. This is either DX or OPERNAM, WWV, QSL,

System Administration Tasks 55

-r <comment>

-k <rights>

FUL, VHF or IOTA.

Add a comment to the table being created. This feature
is only available when type=FUL and is being used for
creating new Udt-tables.

Defines with which access rights the Udt table is being
created. Default is "+-" (read-only). This feature

is only available when type=FUL.

read_akla transfers AK1A PacketCluster data to the following CLX tables:

DX.DAT
OPERNAM.DAT
WWV.DAT
QSL.FUL

* . FUL

dx_data

us_data and us_uhn
wwv_data

gsl_mng

any other Udt table

Using the program is very straightforward. Let’s say, you wish to import your old PacketCluster files

one by one into clx. Here are the steps you have to do.

1. copy the files DX.

DAT, OPERNAM.DAT and WWV.DAT and some *.ful files from PacketCluster into a

temporary directory, say ~clx_us/tmp:

2. run the following import commands:

$ read_akla
$ read_akla
$ read_akla
$ read_akla
$ read_akla

-t dx dx.dat

-t opernam opernam.dat

-t wwv wwv.dat

-t gsl gsl.ful

-t ful address.ful address

With the last two commands you must also specify which Udt table this data is to be applied to.

If you wish to create a new table you must also specify the -c flag and you may optionally add

more flags for the Udt tables being created:

$ read_akla
$ read_akla
$ read_akla
$ read_akla
$

read_akla

-c -t dx dx.dat

-c -t opernam opernam.dat

-c -t wwv wwv.dat

-c -t gsl gsl.ful

-c -r "Address Database'" -k "++" -t ful address.ful address

If you encounter any trouble and see syntax error messages, this indicates a problem with the original
data. The files T got from DBOBCC were partly corrupted, especially the OPERNAM.DAT contained a
lot of trash and T could only use a small part of it. To find out where the trouble is, first create an
intermediate file from the data and take a look at it. This is what I did with my OPERNAM.DAT:

©hH PH H P

dd if=opernam.

read_akla -f -t opernam opernam.dat

vi postgres.input

dat bs=196 count=121 of=opernam.new

read_akla -c -t opernam opernam.new

First T converted the complete file into the intermediate file postgres.input and had a look at it. 1
decided that only the first 121 records (who are 196 bytes long each) were useful. The rest of the data
was completely trashed. With the dd command, T extracted the first 121 records and wrote them to a

new file opernam.new. Finally I imported this file into my data table.

Using this program is not a prerequisite to run CLX. Tt just provides a way to save your long-time

DX information to the new system or import some available database files into CLX. If you decide to

completely start from scratch, just go ahead.

[

System Administration Tasks 56

Here are a few benchmarks reading in DX.DAT files run on a 90 MHz Pentium machine with 64 MB
RAM:

Reading 10,000 DX spots: 46 seconds
Reading 100,000 DX spots: 648 seconds
Reading 486,333 DX spots: 7911 seconds

5.10 Admin Commands

There are a few commands which are reserved for the CLX admin. Any user who has the “admin” bit set

in his user data record is treated as a CLX admin. Additionally, any user who has successfully passed the

set/privi or the pw dialog, does have admin privileges.

5.10.1 Achieving Admin Status

There are four ways to achieve admin status:

1.

automatically by modifying the admin flag with us_adm. This way, a specific callsign is always privi-

leged. This is for relatively private installations where there is no fear of radio pirates.

. manually by using set/priv and supplying a password. This password must be generated using the
~/bin/get_pwd program. It is a string which is calculated from a random number and the pw: entry

in the “/config/clx_par file. The dialog that follows set/priv, CLX presents you with a code:

set/priv
Get password for: 866992064

Now you must call the program ~/bin/get_pwd. This implies that you have Linux running locally
because ~/bin/get_pwd is a statically linked ELF binary and cannot be run under MS-DOS or Win-
dows.

$ ~/bin/get_pwd abcdefgh 866992064
~BTg] V>FUUF
$

Now return the password back to CLX.

set/priv

Get password for: 866992064

~BTg] V>FUUF

Tnx.

dl6rai-3 de xx0xx 17-Jul-1997 1752Z clx >

CLX will either respond with Tnx. or with Sri. depending on whether you replied with the correct
password or not. Un-setting the privileges is done with the command set/nopriv. Users with a

permanent admin status in the user record cannot switch off their privileged status in an way.

See 3.1 (CLX parameters in ~/config/clx_par) how to specify the pw: field in the CLX configuration
file.

manually by using the pw command. This is compatible with THENET or BAYCOM password gen-
eration. For this you must specify a password in the “/config/clx_par file using the baycom_pw

command. The minimum length of the baycom password is 5 characters.

5. System Administration Tasks 57

dl6rai-3 de xx0xx 17-Jul-1997 1745Z clx >
pw

DBOCLX> 29 11 35 9 8

£5&94

dl6érai-3 de xx0xx 17-Jul-1997 1745Z clx >

You may also add digital noise to the password by putting a random number of arbitrary characters

in front and behind the password:

35g0al54w4zhagltkf5&94tr904w6zhtskarel 94w

To get back to unprivileged status use the command pw off. Users with a permanent admin status in

the user record cannot switch off their privileged status in an way.

See 3.1 (CLX parameters in ~/config/clx_par) how to specify the baycom_pw: field in the CLX
configuration file.

4. through authorization from a CLX super user. A super user may use the command set/priv <call>
to change the user status for <call> to “admin”. This status is kept for the current connection only,

it is not permanent. Admin status can be removed again by using set/nopriv <call>.

5.10.2 Admin shell commands

Generally, the CLLX admin can use any program located under the “/exec/privileg directory. By default,

there are a few commands like !, which allows executing Unix commands from the clx prompt:

! pud
/usr/local/clx
dlérai de dbOclx 20-Jul-1997 0807Z clx >

These commands are executed with standard clx_us privileges.

Also there is an interactive shell command which allows you to spawn a shell and interactively work with
the command prompt. the shell and ! are in fact identical, the ! is just a Unix convention found in many

programs. However, note the blank which must go between the ! and the command.

dl6érai de dbOclx 20-Jul-1997 08087Z clx >
shell

$ cd config

$ ed cluster_par

301

/bcc

-dbObcc xa+ tnt-router
s/-dbObcc/dbObcc/

W

300

q

$ exit

exit

dl6rai de dbOclx 20-Jul-1997 0810Z «clx >

The above is an example how you can edit the “/config/cluster_par file from within CLX. You may even
call the editor from the CLX command line:

5. System Administration Tasks 58

dl6érai-2 de dbOclx 23-Nov-1997 1834Z clx >
! ed config/cluster
301

q
dlérai-2 de dbOclx 23-Nov-1997 1834Z clx >

You can use other programs this way too the like:
! clx -c

There are a few other programs/scripts in that directory like ps to list process status from within the CLX
shell, or a ping command to generate a PC51, or mon which lets you call the log_monitor described in 5.9.3
(Log Monitor).

5.10.3 Admin commands for the ~/box directory

There are some basic commands for the CLX admin to modify any files under the ~/box subdirectory:

1s to list a directory relative to the ~/box directory
get to read a file

put to write/create a file

rm to erase a file

mkdir to create a new directory under ~/box

These commands will basically do two things:

1. create/modify/delete a file in the specified directory or create a new directory

2. modify the database accordingly

With this you may create a new file area or change the Message of the day. With the following CLX command
you can enter a new “Message of the Day” message:

put info/help/motd

Please refer to the section 3.6 (MOTD) describing how to set the message of the day automatically.

Or with this command you can examine DJ0ZY’s login script:

get batch/start/djOzy

5.10.4 User Data Table Commands (Udt)

User Data Tables are general purpose database tables for storing information like addresses, IOTA informa-

tion etc. These are the commands to administer these tables.

UDT Admin Commands

create/udt <tablename>/<flags> <cmnt> create a new table
destroy/udt <tablename> destroy an existing table
info/udt <tablename> show info about table

5. System Administration Tasks 59

User commands

show/<tablename> <key> searches the key field and outputs
matching values (exact match)
show/<tablename> “<partial key> searches the key field and outputs
matching values (partial match)
delete/<tablename> <key> delete a record
update/<tablename> <key> update a record

The names of the tables may use characters a-z, underscore “_” and the minus sign “-”. The length of the

name is limited to 3-10 characters. Internally (i.e. in Postgres) the table is created with the prefix “Udt_".
The structure of the table is very simple and essentially identical to PacketCluster’s “.ful” style files. There

W

W

is a case-insensitive keyword consisting of characters a-z, underscore and the minus sign “-”, which may

be 1-16 characters in length. The content field may contain roughly 8000 characters.

The information record, which 1s created automatically when the table 1s created from within CLX, may

contain a comment of up to 255 characters.

There are flags for user write and user read. These flags are specified when the table is created with +

and - characters. The first, leftmost digit is the read symbol, the second one is the write symbol.

++ User may read and write the table
+- User may read the table only (this is the default)
-+ User may write the table (but not read --- does this make sense?)

-- User may not read nor write the table

The information about the table (user rights, comment etc.) is contained in the Clx_Udt_Info record. This
record can not be accessed directly by the user as all user supplied keywords are converted to lower case

before passing them on to Postgres.

The CLX admin may create or destroy Udt tables, as described in section 5.10.3 (User Data Table Com-

mands). Please refer to this section for further details.

5.10.5 Database Maintenance Tool

In order to maintain the CLX database, remove old or erroneous entries, delete old mail messages and other
such tasks, a little menu-driven tool was put under the privileged path. Any user with sysop status can call

up this menu. The output of the program is very limited:

db_maint
(db_maint:dl16rai) -->

The program stops and waits for your input. Using the h command, you may list the available options:

db_maint
(db_maint:dl6rai) --> h

CLX Database maintenance program, main menu

-- DX Table related functions
-- WWV Table related functions
-- Statistical functiomns

-- Modify user records

OB W N =

-- User log related functions

5. System Administration Tasks 60

6 -- Mailbox related functions

7 -- QSL table related functions

8 -- Other database table functions
9 -- General functions

q -- Exit

(db_maint:clx_us) --> _
The available options are pretty self-explaining. The db_maint program is also available from the tools
directory and can be run by cron to do periodic maintenance jobs, like deleting old mail messages, purging
log records etc. For this to work well, db_maint silently turns off the CLX watchdog and back on after it
has finished.

Several parameters for db_maint can be specified in the clx_par file like aging of user records or mail
messages.

For running db_maint via cron, a special mode, the “batch” mode was implemented which executes a
number of commands which can be specified in the clx_par file with the batchcommands: parameter.
Other parameters can also be set there like, for how many days log entries should be kept, how long user
records should be kept, how many days back DX spots should be kept etc. etc.

For further details see 3.1 (CLX parameters in ~/config/clx_ par).

5.10.6 Managing Distribution Lists

With CLX version 3.03 and later, distribution lists are available. These are a kind of symbolic addresses
which can be used both with mail and announce commands by the users. This is useful for sending special

interest bulletins to a group of people as a private mail.

Basically there are three commands to manage the distribution lists:

1. set/distro to add a user to a list - a new list will automatically be created.

2. set/nodistro to remove a user from a distribution list - if the iist is empty, it will automatically be

deleted.

3. show/distro to find out who is on a specific distribution list or which lists are available.

Here is an example: Let’s say we wish to create a new distribution list called SIX for the 6 meter enthusiasts.

So here we go:

set/distro six dl7av
set/distro six dj5mn

set/distro six djloj
Now DL7AV, DJ5MN and DJ10OJ are on the list as we can see here:

sh/distro six
djloj dj5mn dl7av
dlérai de xx0xx 31-Jan-1998 20517 clx >

To see which other lists are available, we can use the following command:
sh/distro

six ukw
dlérai de xx0xx 31-Jan-1998 2051Z clx >

5. System Administration Tasks 61

One other list named ukw is available too. To remove DJSMN from the SIX list, we use the following

command:
set/nodistro ukw dj5mn

Thats all about distribution lists. Users can send messages to these lists using the symbolic names instead
of callsings with the send command. Additionally, they may use the announce command to make directed

announcements to a specific distibution list.

5.10.7 Checking for bad words in mail

In some countries, like the U.K. the sysop is responsible for the messages on his system. He is required
to have a means to auomatically check for mail messages containing evil words or expressions. To make
life easier, CLX allows creating a file where you can specify bad words. A script in the special directory
“clx_us/exec/checks is called for every incoming mail and if the message contains a bad word, it is
disregarded. Simply list the bad words one by one (each in a new line) in the ~/config/bad_words file.

Sample bad words file:

milk
alcohol

This bad _words file will kill all incoming messages which contain the words milk or alcohol.

5.11 Superuser Status

The difference between a CLX admin and superuser is that only the superuser may give admin rights to
other users. This is done with “set/priv <call>”. (See also 3 (Achieving Admin Status)). To become a

superuser, you must use the procedures described in section 5.11 (User Administration).

The first user who logs in after installing the CLX software (usually from the console using the net_usr
command) will automatically be granted superuser rights. Note that logins with net_usr automatically have
SSID -16 if nothing else is specified.

5.12 Extending CLX — the ~/exec/command directory
You may put your own command extensions into this directory. Anything found here is executable by the

user. CLX (in fact the program usc_mng) calls the program with at least one parameter, namely the user’s

callsign. If the user specifies anything on the command line, these parameters are passed as $2, $3, etc.

As an example for extensions, we provide the program sun in that directory which calculates sunrise and
sunset times. When DL6RALI enters

sh/sun k17
on the command line, the program is called from usc_mng as follows:
~“clx_us/exec/command/sh/sun dl6rai k17

The sources of the program sun are available as an example application. You may create your own and if

you like, you may send them to us for inclusion in future releases of the CLX software.

5. System Administration Tasks 62

5.13 Extending CLX even further — the ~/exec/interpr directory

After a while experimenting with the external commands, it became clear that to seamlessly integrate
external programs into CLX, one would need to achieve national language support too. However, adding
this functionality into the external program seemed very complicated and unwise, as CLX already provides
this functionality. So we took another approach.

A new directory was added to the list of command extension directories unter ~/exec, called
~/exec/interpr. Programs in this directory are bound to produce a slightly different output in the form:

\<msg-nr>\tab<pari>\tab<par2>\tab \tab<parn>\n

The first parameter is the message number requested from adv_txt. this is a number of 1-4 figures prefixed
with a backslash. This may be followed by one or more (max. 20) parameters which are filled into the
appropriate "%s" fields in the message. The parameters must be separated by TABs and can only be
strings, no binary data. The last parameter must end with a linefeed. The message numbers must be

between 001 and 2000. Missing parameters are filled with the empty string.

CLX now takes this output and interprets it in the appropriate language and fills in the missing variables in

the output string.

5.14 The interactive clx adm tool

This tool gives you the ability to view the status of the node, and start or stop connections to other nodes
or users. In the future, some of the features currently provided by external tools will be integrated into

clx_adm.

clx_adm comes up with an interactive surface:

#=== C L X ===
[Function: L
f=============ft

You may now press <F2> to see the menu of available sub menus:

#=== C L X ===

[Function: [

f=========t+-——_—____+
| b basics |
| ¢ cluster |
| u user |
Fom e +

lan Maude, GOVGS, reports that he had to set an environment variable called TERMINFO to make this look
correctly. What he did was

$ export TERMINFO=/usr/share/terminfo

before starting clx_adm.

Select a sub menu with the cursor-up/cursor-down keys or by pressing the first characters. Then press
<Enter>. Selecting the basics-Menu, for example, gives you a status report of the system currently running:

5. System Administration Tasks

63

#=== C L X ===
[Function: b [

#=+-BasiCS—=———— ===

I
| Version: 4.02 emulate: 5447
I

| Call: xxOxx Last Start-Up: 20-Sep-1998 0734Z

| Data-Base: on Name: clx_db Host:

Pressing <F4> will bring up a small list to select from:

=== C [X ===
[Function: b [

#=t+-Basics———-—---— -

| Version: 4.02 emulate: 5447

| Fommm - +

| Call: | clx_par |Last Start-Up: 20-Sep-1998 0734Z
| | cluster_par |

| Data-B| adv_txt |: c¢lx_db Host:

| Fom - +

This is the select list to make CLX re-read one of the two configuration files or the language dependend

message files. If this action is not triggered manually, CLX will automatically notice the change of the

configuration files within the next five minutes.

One can also use this feature from the command line:

$ clx_adm +b clx_par

This command will also make CLX re-read the configuration file c1x_par.

Returning to the previous menu level is possible by pressing <ESC> twice. So <ESC><ESC> brings you

back to the main menu.

The second sub menu cluster allows you to instantly lock/unlock, connect and disconnect nodes in your

~/config/cluster_par file. You cannot add any entries to the file here but you can force a connect. This

is a nice option for testing out new routes or connect scripts.

Press ‘c’ or select the sub menu with the cursor-up/cursor-down keys.

#=== C L X ===
[Function: ¢ [
#=+-Cluster---------- +
| |
| Call: [
| |
Fom e +
You will then be prompted for a callsign. You may now either

enter one callsign from your

~/config/cluster_par file directly or rather press <Enter>. Now you will see the list of all currently

known nodes for selection:

=

5. System Administration Tasks 64

#=== C L X ===
[Function: c¢ [
#=+-Cluster---------- +
I I
| Call: I
| - +
[—— | dbOclx [xx0xx 1 >cl act clx PC a |
| monitor [xx0xx 1 >cl - pass clx U |
| dbObcc [xx0xx 1 >cl act clx PC a |
I I
I I
I I
I I
I I
I I
I I
- +

This screen is actually a status report of the current link situation. It shows (in this order):

—_

. The link partner’s callsign.

2. The callsign that is used for the AX.25 connection (incoming or outgoing).

@

A flag showing if the link is locked (either “x” or ¢7)

4. A flag showing if the link is outgoing (>) or incoming (<) and if the partner is a cluster (¢1). This

later flag will be deleted in a future version as it does not make much sense any more.

Link status like it is shown in SHOW/CONFIGURATION.

()]

6. A flag showing the link status being active (act) or passive (pass).
7. A flag showing if the partner is CLX or non-CLX (clx or -).
8. A flag showing which protocol is used: PCxx protocol (PC) or user mode protocol (U).
9. A flag showing the interface type used (a/w/x/1).
10. The ping timer.
11. The ping timout limit.

You can now select one of them by pressing the <Enter> key. Now press <F4>. A list of available commands
is displayed:

#===C L X ===
[Function: c [
#=+-Cluster------——-—- +

I I
| Call: dbObcc |

connect

I
I
| disconnect
I

6. User Administration 65

Locking means that you can temporarily lock a node callsign from being automatically connected. The
unlock function temporarily also unlocks a callsign from the locked list. No permanent changes are applied

to the cluster_par file, after a restart of CLX, all changes made by lock/unlock are gone.
You can now select one of these options or simply go back with <ESC><ESC> to the previous menu.

Finally, the third sub menu is designed for user callsigns. It looks very similar to the previous one:

#=== C L X ===

[Function: u [

#=+-User------------- +
I I
| Call: I
I I
o +

You may now either enter a user’s callsign (who must be currently connected) or simply press <Enter> to
select one from the list of users currently connected. Then, pressing <F4> brings up a choice of options

available.

#=== C L X ===

[Function: u [

| Call: xxOxx I

| tomm - +

o | disconnect |
| log I
e +

So this is it at the moment. You may also use clx_adm in a non-interactive way by simply stating the

commands on the command line. For example:
$ clx_adm +c connect dbObcc

will make CLX instantly startup the connection to DBOBCC. Or,
$ clx_adm +u disconnect df2rg

will instantly disconnect DF2RG.

6 User Administration

6.1 User Commands

User commands are now available as a user manual contributed by lan, GOVGS. You will find it in the

directory ~clx_us/doc/user.

6. User Administration 66

6.2 User flags

Users can have different attributes and rights. These user flags are stored together with other user specific
information like name, QTH, page length etc. in the user database. For every callsign there is exactly one

database entry.

As in AX.25 users can show up with up to 16 different SSIDs (-0...-15) one set of flags is stored for every
SSID. Additionally, there is one more SSID (-16) for logging in from the system console.

The following flags exist for users. These flags may either be specified for a specifiy SSID or (if the speicific
SSID flag is -1) as a default for all SSTDs.

flag attribute meaning
-1 default user has default permissions
login_denied user will be disconnected
2 priority_login user can login even if generally not permitted

login_ignored 1login is ignored (i.e. digipeater)
8 admin user is admin

16 superuser user is superuser

The login_denied attribute is equivalent to PacketCluster’s SET/LOCKOUT command. The user will be
disconnected immediately after his connect without any warning or informal message.

The priority_login flag is reserved for special cases, where login is generally not permitted. Normal users
are then graciously disconnected after being informed with a message saying that the node is not available

at this time. Users with the priority_login flag set will still be able to connect.

With the Flexnet type of net nodes making a connect every 10 minutes or so, it was felt necessary to add the
attribute login_ignored. The station is logged in but — as it is generally not interested in receiving any
information but rather checking the link connection and measuring the time — the login will be ignored, i.e.

nothing will be written to the user database and no greeting message is produced by CLX for such users.

The admin flag is a permission for users who have special tasks to do. see section 5.10 (admin) for more
details.

The superuser flag gives a user even more rights. see section 5.11 (superuser) for more details.

The default flag has a special meaning giving the user the default rights as defined in the default permission
flag.
With these flags it is possible to easily administer users and give special attributes to some. Normal users

will have -1 as their SSID permission flag and 0 as their default permission. That means, they have no

special rights.

Some examples: To exclude a “NOCALL” (an often-heard pirate call) with any SSID, put the default permission
to 1 and leave the ssid permissions at -1. To give admin and priority_login rights to DL6RAI-13, change
the ssid permission to 10 for “DL6RAI-13" and leave all others at -1. To set the name of “DJ0ZY” to “Franta”
you would use the “-n” option. To ignore any logins from (RMNC, Flexnet) digipeaters, let’s say for DBOPV,
put the default permission to 4. This will make both Flexnet and CLX happy.

6.3 The us adm tool

These flags and other attributes can be looked up and changed with the us_adm program in the tools

directory. To follow the examples above you would issue the following commands:

$ us_adm -d 1 nOcall

6. User Administration 67

$ us_adm -p 10 dl6rai-13
$ us_adm -n Franta djOzy
$ us_adm -n 4 dbOpv

When you call us_adm with the -v flag and a callsign, the program lists the user’s entries in the database:

$ us_adm -v dlérai
User Information for Station dl6rai

Name: Ben
Location: 48 34 n 012 12 e
QTH: Ergolding
First login: Sat Feb 03 09:14:08 1996 GMT
Last login: Thu Feb 29 16:47:32 1996 GMT

Pagelength: [default]
Language: german

Character Set:

Exit string: /exit
Address:

SSID-Permission Flags

SSID: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Permissions: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Default Permission: 0 Flag for dl6érai-0: -1 [default]

With CLX version 2.03 us_adm was reworked and can now also create new users. So you it’s not necessary
to have a user log in before you can change his entries. Also the output is slightly different. You can also
erase users with the “-e” switch (this was just added for symmetry). Just call the us_adm program without
any parameters to see what you can do. When a field has blanks in it, you must surround it with double
quotes (“48 34 N 12 12 E).

6.4 Connecting, Disconnecting and Locking out

Privileged users may use the commands disconnect, set/lockout and set/nolockout from within CLX
to either force a disconnect or even lock out the callsign completely. Disconnecting and locking out a station
is quite a drastic measure and should be used only in an emergency. Both actions are logged to io.log for

later investigation. With set/nolockout the ban on the station previously locked out is being removed.

There is also a utility called monitor which can be used to monitor user input and output. This is described

in section 5.9.3 (log_ monitor).

With the connect command you may trigger CLX to start up a link connection and as such avoid lengthy

idle times when the CLX timers are running.

7. Appendix 68

7 Appendix

7.1 Release Notes

The release notes are no longer in this manual. Please look for the files called README_#* in the ~/doc/sysop

directory.

7.2 PacketCluster’s PCxx protocol

The following list comes from the original PacketCluster documentation. These are the messages used among
PacketCluster and CLX nodes. Thanks to OE1ITKW for originally collecting this information:

7.2.1 Excerpt the from PacketCluster sysop manual, Appendix C

Internode communication between PacketCluster nodes is performed by sending Information packets that
begin with the string “PC”, followed by an ACSII coded number between 10 and (currently) 51.

7.2.2 Overview

PC10 Talk mode

PC11 DX info

PC12 Announcement
PC13 Stn into CONF
PC14 Stn out of CONF
PC15 Conference mode
PC16 PC stn add
PC17 PC stn delete

PC18 Initialisation: RequestInit
PC19 Initialisation: NodeAdd
PC20 Initialisation: InitDone
PC21 Initialisation: NodeDelete

PC22 Initialisation: PCDone
PC23 WWV Info

PC24 Here status info

PC25 DX/WWV merge request
PC26 DX merge info

PC27 WWV merge info

PC28 mail: SendSubject
PC29 mail: SendText

PC30 mail: AckSubject

PC31 mail: AckText

PC32 mail: CompleteText
PC33 mail: AckCompleteText

PC34 Remote commands: Command *
PC35 Remote commands: Response *
PC36 Remote commands: Show command

PC37 Needs database update
PC38 Connected node list
PC39 NodeDelete w/disc
PC40 PC file forward

PC41 User info

PC42 Forwarding abort

7. Appendix

PC43 PC-mail: External mail, Send subject
PC44 Remote DB request

PC45 Remote DB response

PC46 Remote DB complete

pPC47 Remote DB update

PC48 Remote user DB update

PC49 Bulletin mail delete

PC50 Local user count

PC51 Ping request or answer

%) PC34 and PC35 are PC84 and PC85 for CLX-to-CLX remote commands.

7.2.3 Syntax description

PC10~from-stn~to-stn"msg~bell-flag~to-stn"from-pc~~
PC11°DXfreq~DXcall“DXmisc~Date~Time~logger~from-pc~hops~~
PC12~from-stn"to-PC msg~sysop-flg~from-pc~wx-flg~hops~"~
PC13"stn"hops~

PC14"stn"hops~

PC15~from-stn"msg~hops~

PC16~"host"stn conf-mode here”“stn conf-mode here~“stn conf-mode here~..."... hops~”
PC17-stn~from-pc~hops~

PC18~cluster-info~ver~~
PC19~here~PC-stn~talk"version~hops~

PC20~

PC21"PC-stn"reason"hops~”

PC22~
PC23~date“hour~SFI“A“K~forecast~logger~from-pc~hops~~
PC24"stn"here~hops~
PC25"merge-stn~from-stn~DX-cnt "WWV-cnt "~
PC26"DXFreq~DXCall~date~time~info~logger~to-stn"~
PC27-~date"hour~SFI"A"K"forecast~logger~to-stn~"
PC28~to-pc from-pc~to-stn~“from-stn~date“time“private-flag~subject™"
PC29"to-pc~from-pc msg-#"text™"
PC30~to-pc~from-pc msg-#"

PC31~to-pc~from-pc msg-#"

PC32"to-pc~from-pc msg-#"

PC33~to-pc~from-pc msg-#"

PC34"to-pc~from-pc~cmd™"~
PC35~to-pc~from-pc~cmd-resp™”
PC36~to-pc~from-pc~cmd~"
PC37"to-pc~from-pc~stream”command~~
PC38~node,node,node,...”"

PC39"stn"reason”
PC40~to-pc~from-pc~filename~bull-flag~line-cnt~
PC41~stn~type~info~hops~~

PC42~to-pc~from-pc msg-#"
PC43~to-pc~from-pc~to-stn~date"time~private-flg subject~line-cnt~~
PC44-to-pc~from-pc~stream~qualifier~key~user~
PC45~to-pc from-pc stream”info~"~
PC46~to-pc~from-pc”stream”

PC47 to-pc~from-pc-user~qualifier~key"stream~type~
PC48~to-pc~from-pc~stream"qualifier~key~user~
PC49-stn~subject ~hops~~

PC50~from-pc~usercnt “hops~

7. Appendix

PC51~to-pc~from-pc-ping~

Legend

logger station that reports the info
bell-flag 1=bell, O=no bell
merge-stn node that provides the info
DXCall DX station call

msg message text

DXFreq DX station frequency
PC-stn PacketCluster node

DXmisc DX misc text

stn Call of connected station
from-stn originating station
conf-mode *=conf, -= no conf

here 1=here, 0=no here

to-stn destination station

host Packet Cluster node call
ping l=request, O=answer

7.2.4 Protocol messages handled by the CLX software
This is a table of PCxx messages which are currently handled by the CLX software.

Msg process generate forward mnote

g
a Q
= =
o
1 1
1 1
1 1

1)
1)

1)

1)

after 9999 lines

o
Q
N
2]
+ o+ o+ F o+ o+ o+ o+ o+ o+ o+ o+ o+ o+
e T S T S

+ o4+ 4+ 4+ o+ o+ o+ o+ 4+

o o
aQ Q
w w
[SalT

1
1 1
1 1

7. Appendix 71

Notes:

e + means CLX processes this request.
e - means CLX ignores this request.

e An empty field denotes meaningless fields.
The field forward has two meanings:

1. broadcast type messages (see 3.2 (Broadcast type PCxx telegrams)) will be forwarded to other nodes
according to CLX’s forwarding scheme (which knows active and passive link partners as well as CLX
and non-CLX partners). If the hop counter in the received telegram is zero, the telegram will not be

forwarded.

2. Telegrams with a destination (like mail forwarding or database request) will be forwarded normally to

the destination.

1) means: Due to compatibility issues with the Pavillion software, this message is not being forwarded to a
PacketCluster node.

7.3 Current Users of the CLX software

This list has grown too big. Please refer to the file /usr/local/clx/doc/misc/user.db for information
about current users of the CLX software. Email addresses shown with an initial # did not work, so they are

probably out of date.

7.4 Thank You!

Numerous people have helped out with information, details, bug reports and other useful things in the years
of the CLX development. Most of our communication was carried out via the Internet, some by Packet

Radio. Thanks to all of you for your help, especially to:

Alan Cox, GW4PTS for putting the AX.25 code into the kernel
Jonathan Naylor, G4KLX, for maintaining the AX.25 code

7. Appendix 72

Harm, DG7DAH for helping us with WAMPES configuration

Joni Baecklund, 0OH2RBJ for lots of feedback, ideas and documentation
Christian Blattnik, DCOJI for providing a place for DBOCLX

Brigitte Blattnik, DH3MBJ for supporting DJOZY, DL6RAI and DCOJI

Robert Chalmas, HB9BZA, for a French version of adv_txt and help files
Diego Serafin, IK3HUK, for the first Italian version of adv_txt and help files
Jonny, DG4MMI, for the German version of adv_txt

Mark Wahl, DL4YBG, for putting special features into TNT

Andrea Fiorentino, IO/N5KME, for the second Italian version of adv_txt
Rich Schmelkin, AE4EJ for running the old CLX mailing list

Ian Maude, GOVGS for helping a lot with the user documentation

Jose Lopez, EAGSW, for a Spanish version of adv_txt

Ignacio Galiana, EA7FPE, for the new version of the Spanish adv_txt
Gerard Parat, F6FGZ for a French version of adv_txt and extensive user manual
Lutz Petschulat, DGOLP, for updating the CLX help files to version 3.02
Heikki Hannikainen, OH7LZB, for running the current CLX mailing list
Luca Palazzo, IWOEXL, for updating the Italian files

Luiz F. Catalan, PP5AQ, for a Portuguese version of adv_txt

Erwin Lemmers, PEINMB, for a Dutch version of adv_txt and help files
Matthew (Max) George, NG7M, for picking up the FAQ maintenance

Peter Pfann, DL2NBU, for his work on the SHOW/SUN command family
Ulrich Mueller, DK4VW, for his work on the German user manual

Arnold Bosch, PE2AB, for updating the Dutch version of adv_txt

Angel Claus, EA7WA, for his help on the Spanish adv_txt

Did T forget you? Please let me know! Want to show up in this list too? Ask for the list of jobs to be done!
Many details and small jobs could be outsourced if we found the people to do it.

7.5 Frequently Asked Questions

The following is a collection of frequently asked questions by users of the CLX software. The FAQ is now
(as of September 1998) being maintained by Matthew (Max) George, NGTM. It will probably be left out
from this document in the near future.

Q. What are the timings for CLX setting up connections to other CLX and/or Pavillion-nodes?

A. CLX usually measures the time for how long nothing has been received on a link connection. If this is
longer than five minutes, CLX sends a ping (PC51) to the node. Then it waits for another 5 minutes. If
nothing is received in return to the ping, it explicitly disconnects the link connection, waits one minute and
starts to setup the link again.

Initially, after CLX has been brought up, the software will start making connections after a period of 60
seconds to allow all database activities to finish before the first node-to-node connection is established.

Q. Which services must be started on my system to run CLX?

A. Basically, you need syslogd, portmap and postmaster. postmaster must be running under user postgres,
all others as root. Additionally you need one of the two communication packages, either Alan Cox’s AX.25
driver or WAMPES. These must be running when CLX is started.

Q. CLX has no monitor. How can I see what my users are doing?

A.

$ tail -f "/logs/io.log

7. Appendix 73

if you have configured syslogd correctly. You may also now use the log _monitor as described in section 5.9.3
(Log Monitor).

Q. What Linux versions has CLX been tested on?
A. We have started CLX with Linux 1.1.50 and we are currently using it under 2.0.35.
Q. rpcinfo says:

rpcinfo: can’t contact portmapper:

RPC: Remote system error - Connection refused

What’s wrong?
A. portmap is not running. Start it from the rc.* script when booting Linux.

Q. In the Postgres directory structure, many files have permissions 600 (“-rw---"). How can any program
touch these files after all?

A. The Postgres database system does all its job via the postmaster process who is handling the communi-
cation with any external processes and programs. This is needed for serialisation so that every transaction
is finished before the next one starts. Due to this, only the postgres user must have access to the database

files. Any user permits etc. are treated internally by the Postgres software.
Q. How come the kissinit command works without specifying a speed?

A. 9600 is the default. If you are using another speed on your line, you must set this explicitly with the stty

command.
Q. When starting up CLX everything comes up until con_ctl, which hangs forever. What’s wrong?

A. The two callsigns, the one you specify with kissattch and the one which is encrypted in ~/config/clx_par
must be identical. Otherwise con_ctl will hang.

Q. SH/DX 20 no longer works, but SH/DX is still OK. What’s happened?

A. Most probably your DX database table has gone wild. This is a bug in Postgres which has not yet been
cleared. We have observed a destroyed DX table many times at DBOCLX. Your only chance to correct the

problem is destroying and building the table from scratch. Here is how:

$ cd ~/db

$ psql clx_db

clx_db=> drop table dx_data;
clx_db=> \i dx_data.cl
clx_db=> \q

$

Q. CLX doesn’t seem to delete the nodes (in sh/conf) after a disconnect. Is it because I'm using an external

script? If not can T do something for this?
A. The Nodes listing i1s a programming problem. T will try to explain:

CLX allows loops and multiple connects within a PacketCluster/CLX network. If a node connection is lost
but another one still exists into the network, which of the nodes in the list are then no longer "members of the
network"? We have tried to solve this question several times without success. So I think CLX currently just
follows the node connect/node disconnect (PC19/PC21) spots and as long as it still has a valid connection,

displays all nodes in the network.

If you can provide us with a good solution to the problem we are ready to implement it.

7. Appendix 74

Q. CLX does not report its own node connection list to other Pavillion PacketCluster nodes? This hides
the network behind CLX to their users. Why don’t you report this information (through PC38/PC39,
PC19/PC21)?

A. The problem you describe (PC38) has in fact nothing to do with PC38. It is only a compatibility issue

and for that reason, CLX is not sending any such information to a PacketCluster node. Here is why:

About 9 months ago CLX would send a list of connected nodes out to every active link. Due to CLX’s
special ability to make multiple connects into a network, some distant nodes already showed up in CLX’s
Node list. We had a configuration like this:

DBOABH-15
I
DBOSPC . DBOBCC-mmmmmmmmmm e OE1XHB
I I
| +--DBOSDX------ (&) ~——-- DBOCLX
I I I
;)7 —— [6:) P +

We found out that whenever DBOCLX reported that it had connected HBOW-8, DB0SDX would no longer
try to establish its own connection to HB9W-8. Obviously, the PacketCluster software anticipated that the

connection already existed.

We had this same situation between DBOBCC, DB0OSDX and DBOCLX so it is certainly a bug/problem in

the Pavillion software (which does not know about multiple links).

For this reason we decided that CLX would not report any network information to neighbouring Pavillion

nodes. However, it does fully report to adjacent CLX nodes.
Q. Is there a CLX mailing list?

A. Yes! Thanks to Heikki Hannikainen, OH7LZB, CLX has its own mailing list. See 3.1 (CLX Mailing List)
for details on how to subscribe.

By the way, the current list of CLX users can be found elsewhere in this document in 7.3 (CLX User List).
Q. How can I restart CLX when a process has died? clx -s followed by clx -u doesn’t work.

A. The reason for this is that (a) one or more of the processes hung and did not clear its rpc port address,

or (b) some of the shared memory areas is not free. What can you do?

There 1s now a -x to the CLX script which allows clearing resources. Clearing rpc ports, however, requires

root privileges.

$ clx -x
You must be root to clear rpc ports.

Password:
Now you should be able to restart CLX without rebooting the machine.

Q. I have only a DOS machine on the Internet. How can I get the big CLX archive to my Linux box?

A. There are several ways. One that I have used often in the past is by using PKZIP on the DOS and unzip
on the Linux side.

Prerequisites: - PKZIP version 2.04 on DOS machine - unzip version 5.12 on Linux machine.

1. Download the file on your DOS machine

2. Copy the file on two disks.

7. Appendix 75

C:\TMP>dir *.tgz
CLX_301 TGZ 2,564,043 07-20-97 9:06p

C:\TMP>pkzip -& a:clx.zip clx_301.tgz

Creating ZIP: A:CLX.ZIP
Adding: CLX_301.TGZ Deflating (2%)
Insert disk #2 - Press a key when ready

, domne.
C:\TMP>

3. Go to your Linux machine and copy the two disks, rename the file from disk 1 to clx1.zip and the
file from disk 2 to c1x2.zip:

$ mcopy a:clx.zip clxl.zip
Copying clx.zip
$ mcopy a:clx.zip clx2.zip
Copying clx.zip

4. Concatenate the two files into one big clx.zip file:

$ cat clxl.zip clx2.zip > clx.zip
5. Now unpack the clx.zip file, ignore the warnings.

$ unzip clx.zip
Archive: clx.zip
warning [clx.zip]:

zipfile claims to be last disk of a multi-part archive;

attempting to process anyway, assuming all parts have been
concatenated together in order. Expect "errors" and warnings...
true multi-part support
doesn’t exist yet (coming soon).

warning [clx.zip]: extra 1457664 bytes at beginning or within zipfile
(attempting to process anyway)

file #0: bad zipfile offset (local header sig): 1457663
(attempting to re-compensate)
inflating: CLX_301.TGZ

$ 11 CLX_301.TGZ

-rW-r--r-- 1 ben users 2564043 Jul 20 21:06 CLX_301.TGZ

You should now have clx_301.tgz on your Linux box.

Q. What do the occasional messages like
icl_com/us_ctrl.cc: Message is not correct "PC50"/

in my io.log mean?

A. PacketCluster knows a special type of external connections using the -EXT switch in the node definition.
Due to a bug in the AK1A software, the PC50 will be sent in a different format which is not understood by
CLX.

Q. My system is crashing very often for unknown reasons. Other CLX sysops report that the version T am
using is generally stable. What can T do?

7. Appendix 76

A. We have found that once in a while, the Postgres database can become slightly corrupted - probably
due to previous crashes or other reasons. That means, the data is available and all looks OK but some
datum deep in the database is broken and when CLX reads it (due to some innocent user command), a
string variable may be exhausted, a float may be returned where an integer was expected etc. etc. As CLX

is never checking the input data received from the database, a program may crash from this bad data.

What has cured the problem in the past several times was backing up the database, destroying it completely,
recreating it and re-reading the data. How do you do it? First you need some time (maybe several hours,
depending on your data) and you need to shutdown CLX. Having done that, issue the following commands

(all as user clx_us):

$ bup_db -s
$ clx_db

$ bup_db -r
$ clx_idx

While backing up the files is normally pretty fast, re-reading the data may take a while.

This treatment was successful for DBOBCC when CLX version 4.00b turned out to be pretty stable elsewehere
but not at DBOBCC. After re-reading the data, the system would stay up for up to 16 days.

Q. How can I turn off the screen blanker?
A. Use /bin/setterm -blank O in your Linux startup scripts.

Q. What does the message "kernel: Unable to load interpreter" mean? I find this in my log when
CLX crashed.

A. This is a very definitive message from the operating system kernel saying that it cannot execute a new
program because it cannot load the ELF interpreter. We have observed that with version 4.00 of CLX
where a bug in one of the programs ate up more and more file descriptors (FDs) and in the end (after a few
hours, sometimes days), there were no more FDs available. Then all kinds of strange things would happen.
Fortunately this bug was found very quickly but when such a message ocurs again, you should check for the
number of FDs currently used with the following command:

echo /proc/[0-9]*/fd/* | wc -w

This command must be executed as root. When freshly started, CLX needs about 300 FDs. The limit in
the unmodified Linux kernel is 1024.

7.6 Known Bugs in the CLX software

Here is a list of known bugs in the current CLX software. If you happen to find a bug not listed here, please

let us know.

e Node callsigns do not disappear from the show/configuration display even after they were discon-
nected. This is a problem which needs a concept. Due to CLX’s ability to support multiple links, it is

unclear when a node is no longer available if one link fails.

e When using REPLY to answer a mail message you received from a station at a different node, your

return message will not be forwarded.

e Telnet link connections have an echo which produce problems within CLX.

7. Appendix 77

7.7 Bugs and Bug Reporting

Nobody is perfect. So is this software. We have put a lot of work and energy into this project but yet some
problems are left to be unleashed. CLX has been on the air at DBOCLX for more than four years now. In
the mean time, many bugs were fixed, new ones introduced and fixed again. At this time we have reached a

point where we believe there are no major bugs left (but you may prove us wrong).

If you find bugs, please try to describe them in a detailed way and let us know. Please be as specific as
possible and include screen shots, logs etc. with your report. Send the report by email to clz@dlérai.muc.de.

Sometimes one of the CLX processes dies silently. You will see that by inspecting io.log or error.log and
seeing a message like this:

snd_ctl/rpc_send.cc -> con_ctl, 0 - 1/djOZy: Connection refused

This usually indicates that con_ctl has died and snd_ctl is not able to deliver a telegram to this process.

In such a case it is very valuable for us to have a copy of the last 10-20 messages in the io.log. Please send

this together with your error report.

This software is developed by DJ0ZY and DL6RAIL. DJOZY is doing the C++ and Postgres core programming.
So his activities are mainly in the ~/bin and ~/db directories. DL6RAT’s job is maintaining the Perl scripts
in “/bin, “/tools, “/exec and the documentation in ~/doc. This information should help you to direct

your bug reports either to Franta or to me. If in doubt, send your message to clr@dl6rai.muc.de.

7.8 Wish List
A list of features currently missing in CLX which are going to be implemented next.
e Making clx watchdog send a warning message to users, one minute before it’s shutting down CLX.

e An extended DX spot line which gives country names, beam heading etc.

e A SHOW/MUF or SHOW/PROPAGATION command (OE1TKW is working on it).

Index

$CLX_HOST, 27 CLX database creation, 8
$LD_LIBRARY_PATH, 7 CLX Home Page, 12
clx unreachable, 23

admin clx adm, 59

commands, 53 clx_etxt, 23

flag, 63 clx_par, 12

status, 53 cx sh, 26

udt commands, 56 clx_ watchdog, 47
adv_txt, 20 clxd, 27

adv_ txt, macros, 21 conn act, 17
_ 3

adv_txt, special characters, 23 conn call. 17
—_)

alias callsign, 17 conn int, 17
—)

amateur frequencies, 24 conn_lock, 19
annlimit, 16
ar__band.cd, 24
autoexec.nos, 30
autostrt.tnt, 26
AX.25

ax2hd.conf, 24, 25

axparms, 25

conn__ path, 19
conn_ ping, 19
conn_port, 17
conn_prot, 19
conn__type, 17
connect, 64

Connect scripts, 30

axports, 24 create/ludt, 43
over ethernet, 25 create/udt, 55
startup script, 25 cty.dat, 41
utils, 24
ax25, 13 db_host, 13
db_maint, 56
batchcommands, 16 db name, 13
baycom pw, 14 db:port, 13
bbs_lst, 16 Debug Level, 15
Bugs, 73 default flag, 63
Bulletin addresses, 15 destroy /udt, 55
bup_db, 10, 49 directory commands, 55

disconnect, 64

callb, 14

Callbook
Flying Horse, 37
Online Data, 37

disconnecting, users, 62
distribution lists, 57

dx_comm, 14

QRZ! Hamradio, 35 dx_lim, 14
check adv_txt, 51 dxlimit, 16
cluster _par ed, 54
file, 16 exec, programs in, 58
CLX Expect, 30
database tables, 41 extending CLX, 58
directory structure, 37
programming interface, 58 filter definition, 14
programs, 38 FTP Site
timings, 69 CLX, 2
user list, 68 DBO0SDX QSL database, 41
user programs, 39 TNT, 26

78

INDEX

get, 55

Hardware requirements, 2
Hops, 12
hops_min, 20

info/udt, 55

init_wait, 20

Internet, Connecting through, 33

interpr, 58

Kernel Panic, 48
KISS Mode, 4, 24
KISS serial port, 24
KISS, TX delay, 5

Id.so, 7
ldconfig, 7
Link

loop, 18

multiple links, 17

one-way, 34

user mode, 19
locking, node callsigns, 62
log_monitor, 50
login denied, 63
login_ignored, 63
loglimit, 15
Is, 55

mail checking, 58
mail _fwd, 20
Mailing List, 11
maillimit, 15
mbx _chk, 50
Merge, 13
merge, 20
MESSAGES.DAT, 20
Migration, 10
mk fwd, 15
monitor, 50, 69
motd, 23

motd new, 23

NETCMD, 27
NODES.DAT, 17

off-line monitoring, 51

parameters
invariant, 12
variant, 12

passwd, 3, 29

Pavillion, 10

PCxx protocol, 65

PCxx protocol, handled by CLX, 67
pgconf, 7

ping_to, 20

pkzip, 71

priority login, 63

put, 55

pw, 14, 53

gsl_rr, 16
gslfile, 16

read akla, 10, 41, 43, 51
regular tasks, 48

rm, 55

rm_fwd, 50

routes.tnt, 27

section, 17
services, required for CLX, 69
set/lockout, 64
set/nolockout, 64
set/priv, 53
Shared Library Paths, 6
show /sun, 58
SSID, 12, 63
superuser flag, 63
superuser rights, 58
Support
by EMail, 73
CLX Home Page, 12
Mailing List, 11
WW Convers, 12
syslog_lev, 15

telnet
CLX access by, 27
in a connect script, 33
term usr, 40
TNOS, 29
TNT, socket feature, 26

udt, 55

udt tables, access rights, 56
us_adm, 63

user commands, 62

user flags, 62

uslimit, 15

vacuum, 13

Version number, 13

INDEX

80

w_host, 13, 27

WAMPES
CLX and WAMPES, 25
extended interface, 27
SSIDs, 26

wampes, 13

watchdog, 47

waz_ddd, 15, 20

WW Convers, 12

wwv_lim, 14

